NOTICE

This manual was produced by the Yamaha Motor Taiwan Company, Ltd. primarily for use by Yamaha dealers and their qualified mechanics. It is not possible to include all the knowledge of a mechanic in one manual. Therefore, anyone who uses this book to perform maintenance and repairs on Yamaha vehicles should have a basic understanding of mechanics and the techniques to repair these types of vehicles. Repair and maintenance work attempted by anyone without this knowledge is likely to render the vehicle unsafe and unfit for use.

Yamaha Motor Taiwan Company, Ltd. is continually striving to improve all of its models. Modifications and significant changes in specifications or procedures will be forwarded to all authorized Yamaha dealers and will appear in future editions of this manual where applicable.

NOTE:

Designs and specifications are subject to change without notice.

IMPORTANT MANUAL INFORMATION

Particularly important information is distinguished in this manual by the following.

⚠️ The Safety Alert Symbol means ATTENTION! BECOME ALERT! YOUR SAFETY IS INVOLVED!

Failure to follow WARNING instructions could result in severe injury or death to the scooter operator, a bystander or a person checking or repairing the scooter.

⚠️ WARNING

A CAUTION indicates special precautions that must be taken to avoid damage to the scooter.

⚠️ CAUTION:

A NOTE provides key information to make procedures easier or clearer.
HOW TO USE THIS MANUAL

This manual is intended as a handy, easy-to-read reference book for the mechanic. Comprehensive explanations of all installation, removal, disassembly, assembly, repair and check procedures are laid out with the individual steps in sequential order.

1. The manual is divided into chapters. An abbreviation and symbol in the upper right corner of each page indicate the current chapter. Refer to “SYMBOLS”.

2. Each chapter is divided into sections. The current section title is shown at the top of each page, except in Chapter 3 (“PERIODIC CHECKS AND ADJUSTMENTS”), where the sub-section title(s) appears.

3. Sub-section titles appear in smaller print than the section title.

4. To help identify parts and clarify procedure steps, there are exploded diagrams at the start of each removal and disassembly section.

5. Numbers are given in the order of the jobs in the exploded diagram. A circled number indicates a disassembly step.

6. Symbols indicate parts to be lubricated or replaced. Refer to “SYMBOLS”.

7. A job instruction chart accompanies the exploded diagram, providing the order of jobs, names of parts, notes in jobs, etc.

8. Jobs requiring more information (such as special tools and technical data) are described sequentially.
The following symbols are not relevant to every vehicle.

Symbols 1 to 9 indicate the subject of each chapter.

1 General information
2 Specifications
3 Periodic checks and adjustments
4 Chassis
5 Engine
6 Cooling system
7 Fuel injection system
8 Electrical system
9 Troubleshooting

Symbols 0 to u indicate the following.
0 Serviceable with engine mounted
q Filling fluid
w Lubricant
e Special tool
r Tightening torque
t Wear limit, clearance
y Engine speed
u Electrical data

Symbols i to d in the exploded diagrams indicate the types of lubricants and lubrication points.
13 Engine oil
16 Gear oil
19 Molybdenum-disulfide oil
20 Wheel-bearing grease
22 Lithium-soap-based grease
23 Molybdenum-disulfide grease

Symbols 24 to 25 in the exploded diagrams indicate the following.
24 Apply locking agent (LOCTITE®)
25 Replace the part
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>PERIODIC CHECKS AND ADJUSTMENTS</td>
<td>3</td>
</tr>
<tr>
<td>CHASSIS</td>
<td>4</td>
</tr>
<tr>
<td>ENGINE</td>
<td>5</td>
</tr>
<tr>
<td>COOLING SYSTEM</td>
<td>6</td>
</tr>
<tr>
<td>FUEL INJECTION SYSTEM</td>
<td>7</td>
</tr>
<tr>
<td>ELECTRICAL SYSTEM</td>
<td>8</td>
</tr>
<tr>
<td>TROUBLESHOOTING</td>
<td>9</td>
</tr>
</tbody>
</table>
CHAPTER 1
GENERAL INFORMATION

SCOOTER IDENTIFICATION ... 1-1
 VEHICLE IDENTIFICATION NUMBER ... 1-1
 MODEL LABEL ... 1-1

FEATURES ... 1-2
 OUTLINE OF THE FI SYSTEM ... 1-2
 FI SYSTEM .. 1-3

IMPORTANT INFORMATION ... 1-4
 PREPARATION FOR REMOVAL AND DISASSEMBLY 1-4
 REPLACEMENT PARTS ... 1-4
 GASKETS, OIL SEALS AND O-RINGS .. 1-4
 LOCK WASHERS/PLATES AND COTTER PINS 1-5
 BEARINGS AND OIL SEALS .. 1-5
 CIRCLIPS .. 1-5
 EQUIPMENT PREPARATION .. 1-6

CHECKING THE CONNECTIONS ... 1-7

SPECIAL TOOLS ... 1-8
GENERAL INFORMATION

VEHICLE IDENTIFICATION NUMBER
The vehicle identification number is stamped into the frame.

MODEL LABEL
The model label is affixed to the frame trunk. This information will be needed to order spare parts.
FEATURES

OUTLINE OF THE FI SYSTEM

The main function of a fuel supply system is to provide fuel to the combustion chamber at the optimum air-fuel ratio in accordance with the engine operating conditions and the atmospheric temperature. In the conventional carburetor system, the air-fuel ratio of the mixture that is supplied to the combustion chamber is created by the volume of the intake air and the fuel that is metered by the jet used in the respective carburetor.

Despite the same volume of intake air, the fuel volume requirement varies by the engine operating conditions, such as acceleration, deceleration, or operation under a heavy load. Carburetors that meter the fuel through the use of jets have been provided with various auxiliary devices, so that an optimum air-fuel ratio can be achieved to accommodate the constant changes in the operating conditions of the engine.

As the requirements for the engine to deliver more performance and cleaner exhaust gases increase, it becomes necessary to control the air-fuel ratio in a more precise and finely tuned manner. To accommodate this need, this model has adopted an electronically controlled fuel injection (FI) system, in place of the conventional carburetor system. This system can achieve an optimum air-fuel ratio required by the engine at all times by using a microprocessor that regulates the fuel injection volume according to the engine operating conditions detected by various sensors.

The adoption of the FI system has resulted in a highly precise fuel supply, improved engine response, better fuel economy, and reduced exhaust emissions.

1 ECU
2 Engine trouble warning light
3 Lean angle cut-off switch
4 Fuel hose
5 Ignition coil
6 Fuel injector
7 Intake air pressure sensor
8 ISC (idle speed control) valve
9 Intake air temperature sensor
10 Battery
11 Air filter case
12 Catalytic converter
13 Crankshaft position sensor
14 Coolant temperature sensor
15 Spark plug
16 Fuel tank
17 Fuel pump
18 Throttle position sensor
FI SYSTEM

The fuel pump delivers fuel to the fuel injector via the fuel filter. The pressure regulator maintains the fuel pressure that is applied to the fuel injector at only 250 kPa (2.5 kg/cm², 35.6 psi). Accordingly, when the energizing signal from the ECU energizes the fuel injector, the fuel passage opens, causing the fuel to be injected into the intake manifold only during the time the passage remains open. Therefore, the longer the length of time the fuel injector is energized (injection duration), the greater the volume of fuel that is supplied. Conversely, the shorter the length of time the fuel injector is energized (injection duration), the lesser the volume of fuel that is supplied.

The injection duration and the injection timing are controlled by the ECU. Signals that are input from the crankshaft position sensor, intake air pressure sensor, intake temperature sensor and engine temperature sensor enable the ECU to determine the injection duration. The injection timing is determined through the signals from the crankshaft position sensor. As a result, the volume of fuel that is required by the engine can be supplied at all times in accordance with the driving conditions.

Illustration is for reference only.

1. Fuel pump
2. Fuel injector
3. Ignition coil
4. ECU
5. Catalytic converter
6. Coolant temperature sensor
7. Crankshaft position sensor
8. Intake air pressure sensor
9. Throttle body assembly
10. Intake air temperature sensor
11. Air filter case
12. ISC (idle speed control) valve
13. Throttle position sensor
A. Fuel system
B. Air system
C. Control system
IMPORTANT INFORMATION

PREPARATION FOR REMOVAL AND DISASSEMBLY

1. Before removal and disassembly, remove all dirt, mud, dust and foreign material.

2. Use only the proper tools and cleaning equipment. Refer to the “SPECIAL TOOLS”.

3. When disassembling, always keep mated parts together. This includes gears, cylinders, pistons and other parts that have been "mated" through normal wear. Mated parts must always be reused or replaced as an assembly.

4. During disassembly, clean all of the parts and place them in trays in the order of disassembly. This will speed up assembly and allow for the correct installation of all parts.

5. Keep all parts away from any source of fire.

REPLACEMENT PARTS

Use only genuine Yamaha parts for all replacements. Use oil and grease recommended by Yamaha for all lubrication jobs. Other brands may be similar in function and appearance, but inferior in quality.

GASKETS, OIL SEALS AND O-RINGS

1. When overhauling the engine, replace all gaskets, seals and O-rings. All gasket surfaces, oil seal lips and O-rings must be cleaned.

2. During reassembly, properly oil all mating parts and bearings and lubricate the oil seal lips with grease.
IMPORTANT INFORMATION

LOCK WASHERS/PLATES AND COTTER PINS

After removal, replace all lock washers/plates and cotter pins. After the bolt or nut has been tightened to specification, bend the lock tabs along a flat of the bolt or nut.

BEARINGS AND OIL SEALS

Install bearings and oil seals so that the manufacturer's marks or numbers are visible. When installing oil seals, lubricate the oil seal lips with a light coat of lithium-soap-based grease. Oil bearings liberally when installing, if appropriate.

Do not spin the bearing with compressed air because this will damage the bearing surfaces.

CIRCLIPS

Before reassembly, check all circlips carefully and replace damaged or distorted circlips. Always replace piston pin clips after one use. When installing a circlip, make sure the sharp-edged corner is positioned opposite the thrust that the circlip receives.
EQUIPMENT PREPARATION
Push Rivet (Push type)
Assembly status of the push rivet (push type).

Disassembling
1. Press center pin ① inward to release the lock.
2. Remove the push rivet main body ②.

Assembling
1. Restore the center pin, replace the push rivet main body.
2. Push in the center pin until leveling off with the surface position of the push rivet main body.
CHECKING THE CONNECTIONS

Check the leads, couplers, and connectors for stains, rust, moisture, etc.

1. Disconnect:
 - lead
 - coupler
 - connector

2. Check:
 - lead
 - coupler
 - connector
 Moisture → Dry with an air blower.
 Rust/stains → Connect and disconnect several times.

3. Check:
 - all connections
 Loose connection → Connect properly.

 NOTE:
 If the pin 1 on the terminal is flattened, bend it up.

4. Connect:
 - lead
 - coupler
 - connector

 NOTE:
 Make sure all connections are tight.

5. Check:
 - continuity
 (with the pocket tester)

 Pocket tester
 90890-03112(YU-03112-C)

 NOTE:
 - If there is no continuity, clean the terminals.
 - When checking the wire harness, perform steps (1) to (3).
 - As a quick remedy, use a contact revitalizer available at most part stores.
SPECIAL TOOLS

The following special tools are necessary for complete and accurate tune-up and assembly. Use only the appropriate special tools as this will help prevent damage caused by the use of inappropriate tools or improvised techniques. Special tools, part numbers or both may differ depending on the country.

When placing an order, refer to the list provided below to avoid any mistakes.

NOTE:
- For U.S.A. and Canada, use part number starting with “YM-”, “YU-”, or “ACC-”.
- For others, use part number starting with “90890-”.

<table>
<thead>
<tr>
<th>Tool NO.</th>
<th>Tool name / Function</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>90890-01052</td>
<td>Meter gear bush tool</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This tool is used when removing or installing the meter gear.</td>
<td></td>
</tr>
<tr>
<td>90890-01085</td>
<td>Slide hammer bolt(8mm)1</td>
<td></td>
</tr>
<tr>
<td>YU-01083-2</td>
<td>Weight2</td>
<td>1 2</td>
</tr>
<tr>
<td>90890-01084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YU-01083-3</td>
<td>These tools are needed to remove the cam-shaft.</td>
<td></td>
</tr>
<tr>
<td>90890-01235</td>
<td>Rotor holding tool</td>
<td></td>
</tr>
<tr>
<td>YU-01235</td>
<td>This tool is used to hold the primary fixed sheave and secondary sheave assembly.</td>
<td></td>
</tr>
<tr>
<td>90890-01268</td>
<td>Ring nut wrench</td>
<td></td>
</tr>
<tr>
<td>YU-01268</td>
<td>This tool is used to loosen and tighten the exhaust and steering ring nut.</td>
<td></td>
</tr>
<tr>
<td>90890-01304</td>
<td>Piston pin puller set</td>
<td></td>
</tr>
<tr>
<td>YU-01304</td>
<td>This tool is used to remove the piston pin.</td>
<td></td>
</tr>
<tr>
<td>90890-01337</td>
<td>Clutch spring holder</td>
<td></td>
</tr>
<tr>
<td>YM-33285</td>
<td>These tools are used for removing the nut with holding the compression spring.</td>
<td></td>
</tr>
<tr>
<td>YM-33285-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90890-01325</td>
<td>Radiator cap tester1</td>
<td></td>
</tr>
<tr>
<td>YU-24460-01</td>
<td>Radiator cap tester adapter2</td>
<td></td>
</tr>
<tr>
<td>90890-01352</td>
<td>This tester and its adapter are needed for checking the cooling system.</td>
<td></td>
</tr>
<tr>
<td>YU-33984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90890-01367</td>
<td>Fork seal driver weight1</td>
<td></td>
</tr>
<tr>
<td>YM-A9409-7</td>
<td>Fork seal driver attachment2</td>
<td></td>
</tr>
<tr>
<td>90890-01400</td>
<td>This tool is used when installing the fork seal.</td>
<td></td>
</tr>
<tr>
<td>YM-A9409-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool NO.</td>
<td>Tool name / Function</td>
<td>Illustration</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>90890-01384</td>
<td>Oil seal guide</td>
<td></td>
</tr>
<tr>
<td>YM-33299</td>
<td>This tool is used for protecting the oil seal lip when installing the secondary sliding sheave.</td>
<td></td>
</tr>
<tr>
<td>90890-01403</td>
<td>Steering nut wrench</td>
<td></td>
</tr>
<tr>
<td>YU-A9472</td>
<td>This tool is used to loosen and tighten the steering ring nut.</td>
<td></td>
</tr>
<tr>
<td>90890-01444</td>
<td>Steering nut wrench(45mm)</td>
<td></td>
</tr>
<tr>
<td>YM-A9409-7</td>
<td>This tool is used to loosen and tighten the upper bearing inner race.</td>
<td></td>
</tr>
<tr>
<td>90890-01468</td>
<td>Flywheel puller set</td>
<td></td>
</tr>
<tr>
<td>YU-33270-B</td>
<td>This tool is used to remove the AC magneto rotor.</td>
<td></td>
</tr>
<tr>
<td>90890-01493</td>
<td>Socket wrench(39mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This tool is used when removing or installing the secondary sheave nut.</td>
<td></td>
</tr>
<tr>
<td>90890-01701</td>
<td>Sheave holder</td>
<td></td>
</tr>
<tr>
<td>YS-01880-A</td>
<td>This tool is used for holding the secondary sheave.</td>
<td></td>
</tr>
<tr>
<td>90890-03079</td>
<td>Thickness gauge</td>
<td></td>
</tr>
<tr>
<td>YM-34483</td>
<td>This tool is used to measure the valve clearance.</td>
<td></td>
</tr>
<tr>
<td>90890-03081</td>
<td>Compression gauge</td>
<td></td>
</tr>
<tr>
<td>YU-33223</td>
<td>This tool is used to measure the engine compression.</td>
<td></td>
</tr>
<tr>
<td>90890-03112</td>
<td>Pocket tester</td>
<td></td>
</tr>
<tr>
<td>YU-03112-C</td>
<td>This instrument is invaluable for checking the electrical system.</td>
<td></td>
</tr>
<tr>
<td>90890-03174</td>
<td>Digital circuit tester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This instrument is invaluable for checking the electrical system.</td>
<td></td>
</tr>
<tr>
<td>90890-03141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YU-03141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool NO.</td>
<td>Tool name / Function</td>
<td>Illustration</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>90890-03141</td>
<td>Timing light</td>
<td></td>
</tr>
<tr>
<td>YU-03141</td>
<td>This tool is used to check the ignition timing.</td>
<td></td>
</tr>
<tr>
<td>90890-03182</td>
<td>FI diagnostic tool</td>
<td></td>
</tr>
<tr>
<td>YU-03182</td>
<td>Execute CO adjustment, confirm fault Code, self diagnosis tool</td>
<td></td>
</tr>
<tr>
<td>90890-04101</td>
<td>Valve lapper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This tool is needed to remove and install the valve lifters.</td>
<td></td>
</tr>
<tr>
<td>90890-04058</td>
<td>Middle driven shaft bearing driver<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>YM-04058</td>
<td>Mechanical seal installer<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>90890-04145</td>
<td>There tools are used to install the water pump seal.</td>
<td></td>
</tr>
<tr>
<td>YM-04145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90890-04101</td>
<td>Valve lapper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This tool is needed to remove and install the valve lifters.</td>
<td></td>
</tr>
<tr>
<td>90890-04019</td>
<td>Valve spring compressor</td>
<td></td>
</tr>
<tr>
<td>YM-04019</td>
<td>Compressor adapter(Ø16.5mm)</td>
<td></td>
</tr>
<tr>
<td>90890-04148</td>
<td>These tools are used when removing or installing the valve and the valve spring.</td>
<td></td>
</tr>
<tr>
<td>YM-04148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90890-06760</td>
<td>Digital tachometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This tool is needed for detecting engine rpm.</td>
<td></td>
</tr>
<tr>
<td>90890-06754</td>
<td>Ignition checker</td>
<td></td>
</tr>
<tr>
<td>YM-34487</td>
<td>This tool is used to check the ignition system components.</td>
<td></td>
</tr>
<tr>
<td>90890-04111</td>
<td>Valve guide remover(4.0mm)</td>
<td></td>
</tr>
<tr>
<td>YM-04111</td>
<td>This tool is used to remove or install the valve guides.</td>
<td></td>
</tr>
<tr>
<td>90890-04112</td>
<td>Valve guide installer(4.0mm)</td>
<td></td>
</tr>
<tr>
<td>YM-04112</td>
<td>This tool is used to install the valve guides.</td>
<td></td>
</tr>
<tr>
<td>90890-04113</td>
<td>Valve guide remover(4.0mm)</td>
<td></td>
</tr>
<tr>
<td>YM-04113</td>
<td>This tool is used to rebore the new valve guides.</td>
<td></td>
</tr>
<tr>
<td>Tool NO.</td>
<td>Tool name / Function</td>
<td>Illustration</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>90890-01326</td>
<td>T-handle①</td>
<td></td>
</tr>
<tr>
<td>YM-01326</td>
<td>Damper rid holder②</td>
<td></td>
</tr>
<tr>
<td>90890-01294</td>
<td>T-handle①</td>
<td></td>
</tr>
<tr>
<td>YM-01300-1</td>
<td>Damper rid holder②</td>
<td></td>
</tr>
<tr>
<td></td>
<td>These tools are used to hold the damper rod when removing or installing the damper rod.</td>
<td></td>
</tr>
<tr>
<td>90890-03153</td>
<td>Pressure gauge</td>
<td></td>
</tr>
<tr>
<td>YU-03153</td>
<td>This tool is used to measure fuel pressure.</td>
<td></td>
</tr>
<tr>
<td>90890-03181</td>
<td>Fuel pressure adapter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This tool is used to measure fuel pressure.</td>
<td></td>
</tr>
<tr>
<td>90890-85505</td>
<td>Yamaha bond NO.1215</td>
<td></td>
</tr>
<tr>
<td>ACC-11001-05-01</td>
<td>Sealant (Quick Gasket®)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This sealant (bond) is used on crankcase mating surfaces(e.g., crankcase mating surfaces).</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 2
SPECIFICATIONS

GENERAL SPECIFICATIONS ... 2-1
ENGINE SPECIFICATIONS ... 2-2
CHASSIS SPECIFICATIONS .. 2-12
ELECTRICAL SPECIFICATIONS ... 2-15
CONVERSION TABLE / GENERAL TIGHTENING TORQUE SPECIFICATIONS .. 2-18
TIGHTENING TORQUES ... 2-19
 ENGINE ... 2-19
 CHASSIS ... 2-21
LUBRICATION POINTS AND LUBRICANT TYPES 2-23
 ENGINE ... 2-23
 CHASSIS ... 2-25
COOLING SYSTEM DIAGRAMS ... 2-26
CABLE ROUTING ... 2-29
GENERAL SPECIFICATIONS

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model code</td>
<td>3B32(USA)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3B33(CAN)</td>
<td>...</td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall length</td>
<td>1905mm(75.00in)</td>
<td>...</td>
</tr>
<tr>
<td>Overall width</td>
<td>685mm(26.97in)</td>
<td>...</td>
</tr>
<tr>
<td>Overall height</td>
<td>1045mm(41.14in)</td>
<td>...</td>
</tr>
<tr>
<td>Seat height</td>
<td>735mm(28.94in)</td>
<td>...</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>1280mm(50.39in)</td>
<td>...</td>
</tr>
<tr>
<td>Minimum ground clearance</td>
<td>115mm(4.53in)</td>
<td>...</td>
</tr>
<tr>
<td>Minimum turning radius</td>
<td>2000mm(78.74in)</td>
<td>...</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet(without oil and a full fuel tank)</td>
<td>90kg(198lb)</td>
<td>...</td>
</tr>
<tr>
<td>Dry(without oil and fuel)</td>
<td>85kg(187lb)</td>
<td>...</td>
</tr>
<tr>
<td>Maximun load(total of cargo, rider, passenger, and accessories)</td>
<td>175kg(386lb)</td>
<td>...</td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine type</td>
<td>Liquid-cooled, 4-stroke, SOHC</td>
<td></td>
</tr>
<tr>
<td>Displacement</td>
<td>0.049L(49cm³, 2.99cu-in)</td>
<td></td>
</tr>
<tr>
<td>Cylinder arrangement</td>
<td>Forward inclined single cylinder</td>
<td></td>
</tr>
<tr>
<td>Bore×stroke</td>
<td>38.0×43.5mm(1.496×1.713in)</td>
<td></td>
</tr>
<tr>
<td>Compression ratio</td>
<td>12:1</td>
<td></td>
</tr>
<tr>
<td>Engine idle speed</td>
<td>2000~2200r/min</td>
<td></td>
</tr>
<tr>
<td>Vacuum pressure at engine idle speed</td>
<td>34.7kPa(260mmHg,10.24inHg)</td>
<td></td>
</tr>
<tr>
<td>Standard compression pressure(at sea level)</td>
<td>1450kPa(14.5kg/cm²)</td>
<td>at 700r/min</td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended fuel</td>
<td>Unleaded gasoline only(USA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular unleaded gasoline only(CAN)</td>
<td></td>
</tr>
<tr>
<td>Fuel tank capacity</td>
<td>4.5L(0.98 Imp gal, 1.18 US gal)</td>
<td></td>
</tr>
<tr>
<td>Engine oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubrication system</td>
<td>Wet sump</td>
<td></td>
</tr>
<tr>
<td>Recommended oil</td>
<td>YAMALUBE4, SAE10W30 or SAE20W40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>API service SG type or higher JASO stand MA</td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodic oil change</td>
<td>0.730.83L(0.670.76 Imp qt, 0.80~0.90 US qt)</td>
<td></td>
</tr>
<tr>
<td>Total amount</td>
<td>0.800.90L(0.740.83 Imp qt, 0.87~0.98 US qt)</td>
<td></td>
</tr>
<tr>
<td>Final gear oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended oil</td>
<td>SAE10W30 hypoid gear oil</td>
<td></td>
</tr>
<tr>
<td>Periodic oil change</td>
<td>0.090.11L(0.080.10 Imp qt, 0.10~0.12 US qt)</td>
<td></td>
</tr>
<tr>
<td>Total amount</td>
<td>0.110.13L(0.100.12 Imp qt, 0.12~0.14 US qt)</td>
<td></td>
</tr>
<tr>
<td>Oil filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil filter type</td>
<td>Wire mesh</td>
<td></td>
</tr>
</tbody>
</table>
ENGINE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil pump type</td>
<td>Trochoid</td>
<td></td>
</tr>
<tr>
<td>Inner rotor to outer rotor tip clearance</td>
<td>0.15mm (0.006in) or less</td>
<td>0.23mm (0.009in)</td>
</tr>
<tr>
<td>Outer rotor to pump housing clearance</td>
<td>0.130.18mm (0.0050.007in)</td>
<td>0.25mm (0.010in)</td>
</tr>
<tr>
<td>Oil pump housing to inner rotor and outer rotor clearance</td>
<td>0.070.12mm (0.0030.005in)</td>
<td>0.19mm (0.008in)</td>
</tr>
<tr>
<td>Cooling system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiator capacity</td>
<td>0.26L (0.23 Imp gal, 0.28 US gal)</td>
<td>...</td>
</tr>
<tr>
<td>Radiator cap opening pressure</td>
<td>107.9137.3kPa (1.11.4kg/cm², 15.6~19.9psi)</td>
<td>...</td>
</tr>
<tr>
<td>Valve relief pressure</td>
<td>1.1kPa (0.01kg/cm², 0.16psi)</td>
<td>...</td>
</tr>
<tr>
<td>Radiator core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>127.4mm (5.016in)</td>
<td>...</td>
</tr>
<tr>
<td>Height</td>
<td>87mm (3.425in)</td>
<td>...</td>
</tr>
<tr>
<td>Depth</td>
<td>16mm (0.630in)</td>
<td>...</td>
</tr>
<tr>
<td>Coolant reservoir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity (up to the maximum level mark)</td>
<td>0.25L (0.22 Imp gal, 0.27 US gal)</td>
<td>...</td>
</tr>
<tr>
<td><From low to full level></td>
<td>0.15L (0.13 Imp gal, 0.16 US gal)</td>
<td>...</td>
</tr>
<tr>
<td>Water pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water pump type</td>
<td>Single-suction centrifugal pump</td>
<td>...</td>
</tr>
<tr>
<td>Max. impeller shaft tilt</td>
<td></td>
<td>0.15mm (0.0059in)</td>
</tr>
<tr>
<td>Starting system type</td>
<td>Electric and kick starter</td>
<td>...</td>
</tr>
<tr>
<td>Electric fuel injection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>3B3</td>
<td>...</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>AISAN</td>
<td>...</td>
</tr>
<tr>
<td>Spark plug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model (manufacturer) × quantity</td>
<td>CR7E (NGK) × 1</td>
<td>...</td>
</tr>
<tr>
<td>Spark plug gap</td>
<td>0.70.8mm (0.0280.031in)</td>
<td>...</td>
</tr>
<tr>
<td>Cylinder head</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>3.13.5cm³ (0.190.21 cu-in)</td>
<td>...</td>
</tr>
<tr>
<td>Maximum warpage</td>
<td></td>
<td>0.05mm (0.0020in)</td>
</tr>
</tbody>
</table>
Camshaft

Drive system

Intake camshaft lobe dimensions

- **Measurement A**: 30.158–30.258mm (1.1873–1.1913in)
- **Measurement B**: 25.082–25.182mm (0.9875–0.9914in)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain drive(left)</td>
<td>...</td>
</tr>
</tbody>
</table>

Exhaust camshaft lobe dimensions

- **Measurement A**: 30.158–30.258mm (1.1873–1.1913in)
- **Measurement B**: 25.020–25.120mm (0.9850–0.9890in)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain drive(left)</td>
<td>...</td>
</tr>
</tbody>
</table>

Maximum camshaft runout

- **Standard**: ...
- **Limit**: 0.03mm (0.0012in)
<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing chain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model/number of links</td>
<td>Morse 92RH2005/82</td>
<td></td>
</tr>
<tr>
<td>Tensioning system</td>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>Valve, valve seats, valve guides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve clearance (cold)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.10–0.16mm (0.0039–0.0063in)</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.18–0.24mm (0.0071–0.0094in)</td>
<td></td>
</tr>
<tr>
<td>Valve dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head Diameter A</td>
<td>15.4–15.6mm (0.6063–0.6142in)</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>16.4–16.6mm (0.6457–0.6535in)</td>
<td></td>
</tr>
<tr>
<td>Valve face width B</td>
<td>1.48–2.19mm (0.0583–0.0862in)</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>1.48–2.19mm (0.0583–0.0862in)</td>
<td></td>
</tr>
<tr>
<td>Valve seat width C</td>
<td>0.9–1.1mm (0.0354–0.0433in)</td>
<td>1.6mm (0.0630in)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.9–1.1mm (0.0354–0.0433in)</td>
<td>1.6mm</td>
</tr>
<tr>
<td>Valve margin thickness D</td>
<td>0.70mm (0.0276in)</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.70mm (0.0276in)</td>
<td></td>
</tr>
<tr>
<td>Valve stem diameter</td>
<td>3.975–3.990mm (0.1565–0.15711in)</td>
<td>3.945mm (0.1553in)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>3.975–3.990mm (0.1565–0.15711in)</td>
<td>3.930mm (0.15471in)</td>
</tr>
<tr>
<td>Valve guide inside diameter</td>
<td>4.000–4.012mm (0.1575–0.1580in)</td>
<td>4.050mm (0.1594in)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>4.000–4.012mm (0.1575–0.1580in)</td>
<td>4.050mm (0.1594in)</td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Valve stem to valve guide clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.010–0.037mm</td>
<td>0.080mm</td>
</tr>
<tr>
<td></td>
<td>(0.0004–0.0015in)</td>
<td>(0.0031in)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.025–0.052mm</td>
<td>0.100mm</td>
</tr>
<tr>
<td></td>
<td>(0.0010–0.0020in)</td>
<td>(0.0039in)</td>
</tr>
<tr>
<td>Valve stem runout</td>
<td>…</td>
<td>0.010mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0004in)</td>
</tr>
<tr>
<td>Valve seat width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.9–1.1mm</td>
<td>1.6mm</td>
</tr>
<tr>
<td></td>
<td>(0.0354–0.0433in)</td>
<td>(0.0630in)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.9–1.1mm</td>
<td>1.6mm</td>
</tr>
<tr>
<td></td>
<td>(0.0354–0.0433in)</td>
<td>(0.0630in)</td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Valve springs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>39.35mm (1.5492in)</td>
<td>37.38mm (1.4717in)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>41.57mm (1.6366in)</td>
<td>39.49mm (1.5547in)</td>
</tr>
<tr>
<td>Installed length (valve closed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>28.0mm (1.1024in)</td>
<td>...</td>
</tr>
<tr>
<td>Exhaust</td>
<td>30.0mm (1.1811in)</td>
<td>...</td>
</tr>
<tr>
<td>Compressed spring force (installed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>91.1104.9N (9.310.7kg, 20.48~23.58lb)</td>
<td>...</td>
</tr>
<tr>
<td>Exhaust</td>
<td>107.9124.1N (11.012.7kg, 24.26~27.90lb)</td>
<td>...</td>
</tr>
<tr>
<td>Spring tilt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>...</td>
<td>2.5°/1.7mm (2.5°/0.0669in)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>...</td>
<td>2.5°/1.8mm (2.5°/0.0709in)</td>
</tr>
<tr>
<td>Winding direction (top view)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>Clockwise</td>
<td>...</td>
</tr>
<tr>
<td>Exhaust</td>
<td>Clockwise</td>
<td>...</td>
</tr>
<tr>
<td>Valve seat reformed</td>
<td>Yes</td>
<td>...</td>
</tr>
<tr>
<td>Cylinder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder arrangement</td>
<td>Forward inclined single cylinder</td>
<td>...</td>
</tr>
<tr>
<td>Bore×stroke</td>
<td>38.0×43.5mm (1.496×1.713in)</td>
<td>...</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>12:1</td>
<td>...</td>
</tr>
<tr>
<td>Bore</td>
<td>38.00038.010mm (1.4961.497in)</td>
<td>...</td>
</tr>
<tr>
<td>Maximum taper</td>
<td>...</td>
<td>0.05mm (0.0020in)</td>
</tr>
<tr>
<td>Maximum out-of-round</td>
<td>...</td>
<td>0.05mm (0.0020in)</td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Piston</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston-to-cylinder clearance</td>
<td>0.010–0.035mm (0.0004–0.0014in)</td>
<td>0.150mm (0.0059in)</td>
</tr>
<tr>
<td>Diameter D</td>
<td>37.975–37.990mm (1.4951–1.4957in)</td>
<td>...</td>
</tr>
<tr>
<td>Height H</td>
<td>5.0mm (0.1969in)</td>
<td>...</td>
</tr>
<tr>
<td>Piston pin bore(in the piston)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>10.002–10.013mm (0.3938–0.3942in)</td>
<td>10.043mm (0.3954in)</td>
</tr>
<tr>
<td>Offset</td>
<td>0.35–0.65mm</td>
<td>...</td>
</tr>
<tr>
<td>Offset direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston pin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside diameter</td>
<td>9.996–10.000mm (0.3935–0.3937in)</td>
<td>9.976mm (0.3928in)</td>
</tr>
<tr>
<td>Piston rings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top ring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring type</td>
<td>Barrel</td>
<td>...</td>
</tr>
<tr>
<td>Dimensions(B×T)</td>
<td>0.8×1.65mm (0.0315×0.0650in)</td>
<td>...</td>
</tr>
<tr>
<td>End gap(installed)</td>
<td>0.05–0.15mm (0.0020–0.0059in)</td>
<td>0.40mm (0.0157in)</td>
</tr>
<tr>
<td>Ring side clearance</td>
<td>0.03–0.07mm (0.0012–0.0028in)</td>
<td>0.12mm (0.0047in)</td>
</tr>
<tr>
<td>2nd ring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring type</td>
<td>Taper</td>
<td>...</td>
</tr>
<tr>
<td>Dimensions(B×T)</td>
<td>0.8×1.55mm (0.0315×0.0591in)</td>
<td>...</td>
</tr>
<tr>
<td>End gap(installed)</td>
<td>0.05–0.17mm (0.0020–0.0067in)</td>
<td>0.52mm (0.0205in)</td>
</tr>
<tr>
<td>Ring side clearance</td>
<td>0.02–0.06mm (0.0008–0.0024in)</td>
<td>0.12mm (0.0047in)</td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Oil ring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions(B×T)</td>
<td>1.5×1.6mm</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.0591×0.0630in)</td>
<td></td>
</tr>
<tr>
<td>End gap(installed)</td>
<td>0.2–0.7mm</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.0079–0.0276in)</td>
<td></td>
</tr>
<tr>
<td>Ring side clearance</td>
<td>0.03–0.15mm</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.0012–0.0059in)</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Rocker arm/rocker arm shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocker arm inside diameter</td>
<td>10.000–10.015mm</td>
<td>10.030mm</td>
</tr>
<tr>
<td></td>
<td>(0.3937–0.3943in)</td>
<td>(0.3949in)</td>
</tr>
<tr>
<td>Rocker arm shaft outside diameter</td>
<td>9.981–9.991mm</td>
<td>9.950mm</td>
</tr>
<tr>
<td></td>
<td>(0.3930–0.3933in)</td>
<td>(0.3917in)</td>
</tr>
<tr>
<td>Arm-to-shaft clearance</td>
<td>0.009–0.034mm</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.0004–0.0013in)</td>
<td></td>
</tr>
<tr>
<td>Connecting rod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting rod length</td>
<td>79.95–80.05mm</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(3.1476–3.1516in)</td>
<td></td>
</tr>
<tr>
<td>Small end inside diameter</td>
<td>10.015–10.028mm</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0.3943–0.3948in)</td>
<td></td>
</tr>
<tr>
<td>Crankshaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width A</td>
<td>42.45–42.50mm</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(1.671–1.673in)</td>
<td></td>
</tr>
<tr>
<td>Maximum runout C</td>
<td>...</td>
<td>0.03mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0012in)</td>
</tr>
<tr>
<td>Big end side clearance D</td>
<td>0.15–0.45mm</td>
<td>1.00mm</td>
</tr>
<tr>
<td></td>
<td>(0.006–0.018in)</td>
<td>(0.0394in)</td>
</tr>
<tr>
<td>Big end radial clearance E</td>
<td>0–0.010mm</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(0–0.0004in)</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Clutch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clutch type</td>
<td>Automatic centrifugal</td>
<td></td>
</tr>
<tr>
<td>Clutch shoe thickness</td>
<td>3.7mm (0.146in)</td>
<td>2.0mm (0.079in)</td>
</tr>
<tr>
<td>Clutch shoe spring free length</td>
<td>30.1mm (1.185in)</td>
<td></td>
</tr>
<tr>
<td>Clutch housing inside diameter</td>
<td>107mm (4.213in)</td>
<td>107.5mm (4.232in)</td>
</tr>
<tr>
<td>Compression spring free length</td>
<td>76.4mm (3.008in)</td>
<td></td>
</tr>
<tr>
<td>Weight outside diameter</td>
<td>15.0mm (0.591in)</td>
<td>14.5mm (0.571in)</td>
</tr>
<tr>
<td>Clutch-in revolution</td>
<td>3050~3450r/min</td>
<td></td>
</tr>
<tr>
<td>Clutch-stall revolution</td>
<td>5000~6000r/min</td>
<td></td>
</tr>
<tr>
<td>V-belt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-belt width</td>
<td>17.9mm (0.705in)</td>
<td>16.1mm (0.634in)</td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission type</td>
<td>V-belt automatic</td>
<td></td>
</tr>
<tr>
<td>Primary reduction system</td>
<td>Helical gear</td>
<td></td>
</tr>
<tr>
<td>Primary reduction ratio</td>
<td>50/13 (3.846)</td>
<td></td>
</tr>
<tr>
<td>Secondary reduction system</td>
<td>Helical gear</td>
<td></td>
</tr>
<tr>
<td>Secondary reduction ratio</td>
<td>43/12 (3.583)</td>
<td></td>
</tr>
<tr>
<td>Single speed automatic</td>
<td>3.087~0.945:1</td>
<td></td>
</tr>
<tr>
<td>Maximum main axle runout</td>
<td>...</td>
<td>0.04mm (0.002in)</td>
</tr>
<tr>
<td>Maximum drive axle runout</td>
<td>...</td>
<td>0.04mm (0.002in)</td>
</tr>
<tr>
<td>Air filter type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump type</td>
<td>Electrical</td>
<td></td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>3B3 (AISAN)</td>
<td></td>
</tr>
<tr>
<td>Output pressure</td>
<td>250kPa (2.5kg/cm², 35.6psi)</td>
<td></td>
</tr>
<tr>
<td>Throttle body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throttle cable free play</td>
<td>1.53.5mm (0.060.14in)</td>
<td></td>
</tr>
<tr>
<td>(at the flange of the throttle grip)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID mark</td>
<td>3B31 00</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame type</td>
<td>Steel tube backbone</td>
<td>...</td>
</tr>
<tr>
<td>Caster angle</td>
<td>26°</td>
<td>...</td>
</tr>
<tr>
<td>Trail</td>
<td>84mm(3.31in)</td>
<td>...</td>
</tr>
<tr>
<td>Front wheel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel type</td>
<td>Cast wheel</td>
<td>...</td>
</tr>
<tr>
<td>Rim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>J10xMT3.00</td>
<td>...</td>
</tr>
<tr>
<td>Material</td>
<td>Aluminum</td>
<td>...</td>
</tr>
<tr>
<td>Wheel travel</td>
<td>58mm(2.28in)</td>
<td>...</td>
</tr>
<tr>
<td>Wheel runout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum radial wheel runout</td>
<td>...</td>
<td>1.0mm (0.04in)</td>
</tr>
<tr>
<td>Maximum lateral wheel runout</td>
<td>...</td>
<td>1.0mm (0.04in)</td>
</tr>
<tr>
<td>Wheel axle bending limit</td>
<td>...</td>
<td>0.25mm (0.01in)</td>
</tr>
<tr>
<td>Rear wheel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel type</td>
<td>Cast wheel</td>
<td>...</td>
</tr>
<tr>
<td>Rim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>J10xMT3.00</td>
<td>...</td>
</tr>
<tr>
<td>Material</td>
<td>Aluminum</td>
<td>...</td>
</tr>
<tr>
<td>Wheel travel</td>
<td>56mm(2.20in)</td>
<td>...</td>
</tr>
<tr>
<td>Wheel runout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum radial wheel runout</td>
<td>...</td>
<td>1.0mm (0.04in)</td>
</tr>
<tr>
<td>Maximum lateral wheel runout</td>
<td>...</td>
<td>1.0mm (0.04in)</td>
</tr>
<tr>
<td>Front tire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire type</td>
<td>Tubeless</td>
<td>...</td>
</tr>
<tr>
<td>Size</td>
<td>120/90-10 57J</td>
<td>...</td>
</tr>
<tr>
<td>Model(manufacturer)</td>
<td>C-6022(CHENG SHIN)</td>
<td>...</td>
</tr>
<tr>
<td>Tire pressure(cold)</td>
<td>175kPa(1.75kgf/cm², 25psi)</td>
<td>...</td>
</tr>
<tr>
<td>0175kg(0386lb)</td>
<td></td>
<td>0.8mm (0.03in)</td>
</tr>
<tr>
<td>Minimum tire tread depth</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Rear tire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire type</td>
<td>Tubeless</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>120/90-10.57J</td>
<td></td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>C-6022 (CHENG SHIN)</td>
<td></td>
</tr>
<tr>
<td>Tire pressure (cold)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0175kg (0386lb)</td>
<td>175kPa (1.75kgf/cm², 25psi)</td>
<td></td>
</tr>
<tr>
<td>Minimum tire tread depth</td>
<td></td>
<td>0.8mm (0.03in)</td>
</tr>
<tr>
<td>Front brake</td>
<td>Drum brake</td>
<td></td>
</tr>
<tr>
<td>Brake type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Right-hand operation</td>
<td></td>
</tr>
<tr>
<td>Brake lever free play (at lever end)</td>
<td>1020mm (0.390.79in)</td>
<td></td>
</tr>
<tr>
<td>Brake drum inside diameter</td>
<td>110mm (4.33in)</td>
<td>110.5mm (4.35in)</td>
</tr>
<tr>
<td>Lining thickness</td>
<td>4.0mm (0.16in)</td>
<td>2.0mm (0.08in)</td>
</tr>
<tr>
<td>Rear brake</td>
<td>Drum brake</td>
<td></td>
</tr>
<tr>
<td>Brake type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Left-hand operation</td>
<td></td>
</tr>
<tr>
<td>Brake lever free play (at lever end)</td>
<td>1020mm (0.390.79in)</td>
<td></td>
</tr>
<tr>
<td>Brake drum inside diameter</td>
<td>110mm (4.33in)</td>
<td>110.5mm (4.35in)</td>
</tr>
<tr>
<td>Lining thickness</td>
<td>4.0mm (0.16in)</td>
<td>2.0mm (0.08in)</td>
</tr>
<tr>
<td>Front suspension</td>
<td>Telescopic fork</td>
<td></td>
</tr>
<tr>
<td>Suspension type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front fork type</td>
<td>Coil spring</td>
<td></td>
</tr>
<tr>
<td>Front fork travel</td>
<td>65mm (2.56in)</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free length</td>
<td>202.2mm (7.96in)</td>
<td>198.2mm (7.80in)</td>
</tr>
<tr>
<td>Installed length</td>
<td>188.2mm (7.41in)</td>
<td></td>
</tr>
<tr>
<td>Spring rate (K1)</td>
<td>10.1N/mm (1.03kg/mm)</td>
<td></td>
</tr>
<tr>
<td>Spring stroke (K1)</td>
<td>065mm (02.56in)</td>
<td></td>
</tr>
<tr>
<td>Optional spring available</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Fork oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended oil</td>
<td>Fork oil 10W or equivalent</td>
<td></td>
</tr>
<tr>
<td>Quantity (each front fork leg)</td>
<td>0.042L (0.038 imperial qt, 0.046 US qt)</td>
<td></td>
</tr>
<tr>
<td>Inner tube outer diameter</td>
<td>26mm (1.02in)</td>
<td></td>
</tr>
<tr>
<td>Inner tube bending limit</td>
<td></td>
<td>0.2mm (0.01in)</td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Steering system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering bearing type</td>
<td>Angular bearing</td>
<td>...</td>
</tr>
<tr>
<td>Lock-to-lock angle(left)</td>
<td>46°</td>
<td>...</td>
</tr>
<tr>
<td>Lock-to-lock angle(right)</td>
<td>46°</td>
<td>...</td>
</tr>
<tr>
<td>Rear suspension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension type</td>
<td>Unit swing</td>
<td>...</td>
</tr>
<tr>
<td>Rear shock absorber assembly type</td>
<td>Coil spring</td>
<td>...</td>
</tr>
<tr>
<td>Rear shock absorber assembly travel</td>
<td>45mm(1.77in)</td>
<td>...</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free length</td>
<td>176.5mm(6.95in)</td>
<td>...</td>
</tr>
<tr>
<td>Installed length</td>
<td>162.5mm(6.40in)</td>
<td>...</td>
</tr>
<tr>
<td>Spring rate(K1)</td>
<td>28.03N/mm (2.85kg/mm, 159.59lb/in)</td>
<td>...</td>
</tr>
<tr>
<td>Spring rate(K2)</td>
<td>42.18N/mm (4.30kg/mm, 240.79lb/in)</td>
<td>...</td>
</tr>
<tr>
<td>Spring stroke(K1)</td>
<td>017mm(00.67in)</td>
<td>...</td>
</tr>
<tr>
<td>Spring stroke(K2)</td>
<td>1745mm(0.671.77in)</td>
<td>...</td>
</tr>
<tr>
<td>Optional spring available</td>
<td>No</td>
<td>...</td>
</tr>
</tbody>
</table>
ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>System voltage</td>
<td>12V</td>
<td>...</td>
</tr>
<tr>
<td>Ignition system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignition system type</td>
<td>Transistorized coil ignition</td>
<td>...</td>
</tr>
<tr>
<td>Ignition timing</td>
<td>5° BTDC at 2000~2200r/min</td>
<td>...</td>
</tr>
<tr>
<td>Advancer type</td>
<td>Digita</td>
<td>...</td>
</tr>
<tr>
<td>Crankshaft position sensor resistance/color</td>
<td>248~372Ω at 20°C(68°F)/white/red-white/blue</td>
<td>...</td>
</tr>
<tr>
<td>Ignition coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model(manufacturer)</td>
<td>3B3 00(T-MORIC)</td>
<td>...</td>
</tr>
<tr>
<td>Minimum ignition spark gap</td>
<td>6mm(0.24in)</td>
<td>...</td>
</tr>
<tr>
<td>Primary coil resistance</td>
<td>2.16~2.64Ω at 20°C(68°F)</td>
<td>...</td>
</tr>
<tr>
<td>Secondary coil resistance</td>
<td>8.64~12.96kΩ at 20°C(68°F)</td>
<td>...</td>
</tr>
<tr>
<td>Spark plug cap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Resin</td>
<td>...</td>
</tr>
<tr>
<td>Resistance</td>
<td>4~6kΩ at 20°C(68°F)</td>
<td>...</td>
</tr>
<tr>
<td>Charging system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System type</td>
<td>AC magneto</td>
<td>...</td>
</tr>
<tr>
<td>Model(manufacturer)</td>
<td>F3B3(T-MORIC)</td>
<td>...</td>
</tr>
<tr>
<td>Nominal output</td>
<td>14V 130W/5000r/min</td>
<td>...</td>
</tr>
<tr>
<td>Stator coil resistance/color</td>
<td>0.28~0.42Ω at 20°C(68°F)/white-white</td>
<td>...</td>
</tr>
<tr>
<td>Rectifier/regulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator type</td>
<td>Semiconductor, short circuit</td>
<td>...</td>
</tr>
<tr>
<td>Model(manufacturer)</td>
<td>SH745-AA(SHINDENGEN)</td>
<td>...</td>
</tr>
<tr>
<td>No load regulated voltage</td>
<td>13.0~14.0V</td>
<td>...</td>
</tr>
<tr>
<td>Rectifier capacity</td>
<td>24A</td>
<td>...</td>
</tr>
<tr>
<td>Withstand voltage</td>
<td>200V</td>
<td>...</td>
</tr>
<tr>
<td>Battery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery type(manufacturer)</td>
<td>GTX5L-BS(GS)</td>
<td>...</td>
</tr>
<tr>
<td>Battery voltage/capacity</td>
<td>12V/4AH</td>
<td>...</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.330</td>
<td>...</td>
</tr>
<tr>
<td>Ten hour rate amperage</td>
<td>0.4A</td>
<td>...</td>
</tr>
<tr>
<td>Headlight type</td>
<td>Halogen bulb</td>
<td>...</td>
</tr>
<tr>
<td>Indicator light(voltage/wattage×quantity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn signal indicator light</td>
<td>14V 3.0W×1</td>
<td>...</td>
</tr>
<tr>
<td>High beam indicator light</td>
<td>12V 1.7W×1</td>
<td>...</td>
</tr>
<tr>
<td>Engine trouble warning light</td>
<td>12V 1.7W×1</td>
<td>...</td>
</tr>
<tr>
<td>Water temperature indicator light</td>
<td>14V 1.7W×1</td>
<td>...</td>
</tr>
</tbody>
</table>
ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulbs (voltage/wattage x quantity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headlight</td>
<td>12V 35/35W x 1</td>
<td>...</td>
</tr>
<tr>
<td>Tail/brake light</td>
<td>12V 5/21W x 1</td>
<td>...</td>
</tr>
<tr>
<td>Front turn signal light</td>
<td>12V 10W x 2</td>
<td>...</td>
</tr>
<tr>
<td>Rear turn signal light</td>
<td>12V 10W x 2</td>
<td>...</td>
</tr>
<tr>
<td>License plate light</td>
<td>12V 5W x 1</td>
<td>...</td>
</tr>
<tr>
<td>Speedometer light</td>
<td>12V 1.7W x 1</td>
<td>...</td>
</tr>
<tr>
<td>Electric starting system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System type</td>
<td>Constant mesh</td>
<td>...</td>
</tr>
<tr>
<td>Starter motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>3B3 00 (T-MORIC)</td>
<td>...</td>
</tr>
<tr>
<td>Suction voltage</td>
<td>12V</td>
<td>...</td>
</tr>
<tr>
<td>Power output</td>
<td>0.25kW</td>
<td>...</td>
</tr>
<tr>
<td>Brushes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall length</td>
<td>7.0mm (0.28in)</td>
<td>3.5mm (0.14in)</td>
</tr>
<tr>
<td>Quantity</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>Spring force</td>
<td>3.925.88N (400600gf, 14.11~21.16oz)</td>
<td>...</td>
</tr>
<tr>
<td>Commutator diameter</td>
<td>17.6mm (0.69in)</td>
<td>16.6mm (0.65in)</td>
</tr>
<tr>
<td>Commutator resistance</td>
<td>0.0378~0.0462Ω at 20°C (68°F)</td>
<td>...</td>
</tr>
<tr>
<td>Mica undercut (depth)</td>
<td>1.35mm (0.05in)</td>
<td></td>
</tr>
<tr>
<td>Starter relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>5WC 00 (OMRON)</td>
<td>...</td>
</tr>
<tr>
<td>Amperage</td>
<td>50A</td>
<td>...</td>
</tr>
<tr>
<td>Coil resistance</td>
<td>90~110Ω</td>
<td>...</td>
</tr>
<tr>
<td>Suction voltage</td>
<td>More than DC10V</td>
<td>...</td>
</tr>
<tr>
<td>Horn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horn type</td>
<td>Plane</td>
<td>...</td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>GF-127 (NIKKO)</td>
<td>...</td>
</tr>
<tr>
<td>Maximum amperage</td>
<td>1.0A</td>
<td>...</td>
</tr>
<tr>
<td>Performance</td>
<td>95~115dB/2m</td>
<td>...</td>
</tr>
<tr>
<td>Coil resistance</td>
<td>3.96~4.10W at 20°C (68°F)</td>
<td>...</td>
</tr>
<tr>
<td>Turn signal relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay type</td>
<td>Condenser</td>
<td>...</td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>FZ222SD (DENSO)</td>
<td>...</td>
</tr>
<tr>
<td>Self-cancelling device built-in</td>
<td>NO</td>
<td>...</td>
</tr>
<tr>
<td>Turn signal blinking frequency</td>
<td>75~95cycles/minute</td>
<td>...</td>
</tr>
<tr>
<td>Wattage</td>
<td>10W x 2 + 3.4W</td>
<td>...</td>
</tr>
</tbody>
</table>
ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse (amperage × quantity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main fuse</td>
<td>15A × 1</td>
<td>...</td>
</tr>
<tr>
<td>Fuel gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>3B3 (AISAN)</td>
<td>...</td>
</tr>
<tr>
<td>Sender unit resistance-full</td>
<td>4~10Ω</td>
<td>...</td>
</tr>
<tr>
<td>Sender unit resistance-empty</td>
<td>90~100Ω</td>
<td>...</td>
</tr>
<tr>
<td>Starting circuit cut-off relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>4HC1 (MATSU SHITA)</td>
<td>...</td>
</tr>
<tr>
<td>Diode</td>
<td>YES</td>
<td>...</td>
</tr>
<tr>
<td>Radiator fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>5ST1 (LUNTAI)</td>
<td>...</td>
</tr>
<tr>
<td>Running rpm</td>
<td>10000r/min or less</td>
<td>...</td>
</tr>
<tr>
<td>Thermostat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type (manufacturer)</td>
<td>4BA1 (NIPPON THERMOSTAT)</td>
<td>...</td>
</tr>
<tr>
<td>Valve opening temperature</td>
<td>83~87°C</td>
<td>...</td>
</tr>
<tr>
<td>Valve full open temperature</td>
<td>100°C</td>
<td>...</td>
</tr>
<tr>
<td>Valve lift-full open</td>
<td>3.5mm</td>
<td>...</td>
</tr>
<tr>
<td>Coolant temperature sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model (manufacturer)</td>
<td>5YP1 (DENSO)</td>
<td>...</td>
</tr>
<tr>
<td>Coil resistance at 20°C (68°F)</td>
<td>2.32~2.59kΩ</td>
<td>...</td>
</tr>
<tr>
<td>Coil resistance at 80°C (176°F)</td>
<td>0.310~0.326kΩ</td>
<td>...</td>
</tr>
<tr>
<td>Intake air pressure sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>0.789~4.0V</td>
<td>...</td>
</tr>
<tr>
<td>Intake air temperature sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coi l resistance/color</td>
<td>5.7~6.3kΩ at 20°C (68°F)/ brown-white/black-blue</td>
<td>...</td>
</tr>
<tr>
<td>Speed sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>DC 4.8V or more</td>
<td>...</td>
</tr>
<tr>
<td>When sensor is on</td>
<td>DC 0.6V or less</td>
<td>...</td>
</tr>
<tr>
<td>Throttle position sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage / color</td>
<td>5V / blue-black / blue</td>
<td>...</td>
</tr>
<tr>
<td>Output voltage (closed position) / color</td>
<td>0.63~0.73V / yellow-black / blue</td>
<td>...</td>
</tr>
<tr>
<td>ISC (idle speed control) valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance / color</td>
<td>18~22Ω at 20°C (68°F) / pink-green / yellow or gray-sky blue</td>
<td>...</td>
</tr>
<tr>
<td>Lean angle cut-off switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 65°</td>
<td>0.4~1.4V</td>
<td>...</td>
</tr>
<tr>
<td>More than 65°</td>
<td>3.7~4.4V</td>
<td>...</td>
</tr>
</tbody>
</table>
CONVERSION TABLE / GENERAL TIGHTENING TORQUE SPECIFICATIONS

CONVERSION TABLE

All specification data in this manual are listed in SI and METRIC UNITS. Use this table to convert METRIC unit data to IMPERIAL unit data.

Ex.

<table>
<thead>
<tr>
<th>METRIC</th>
<th>MULTIPLIER</th>
<th>IMPERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>** mm</td>
<td>0.03937</td>
<td>** in</td>
</tr>
<tr>
<td>2 mm</td>
<td>0.03937</td>
<td>0.08 in</td>
</tr>
</tbody>
</table>

CONVERSION TABLE

<table>
<thead>
<tr>
<th>METRIC TO IMPERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric unit</td>
</tr>
<tr>
<td>m·kg</td>
</tr>
<tr>
<td>m·kg</td>
</tr>
<tr>
<td>cm·kg</td>
</tr>
<tr>
<td>cm·kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th>kg</th>
<th>g</th>
<th>lb</th>
<th>oz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.205</td>
<td>0.03527</td>
<td>lb</td>
<td>oz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed</th>
<th>km/hr</th>
<th>mph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6214</td>
<td>mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance</th>
<th>km</th>
<th>m</th>
<th>ft</th>
<th>yd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6214</td>
<td>3.281</td>
<td>ft</td>
<td>yd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume/Capacity</th>
<th>cc (cm³)</th>
<th>cc (cm³)</th>
<th>lt (liter)</th>
<th>lt (liter)</th>
<th>oz (IMP liq.)</th>
<th>cu-in</th>
<th>qt (IMP liq.)</th>
<th>gal (IMP liq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.03527</td>
<td>0.06102</td>
<td>0.8799</td>
<td>0.2199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Misc.</th>
<th>kg/mm</th>
<th>kg/cm²</th>
<th>Centigrade (°C)</th>
<th>lb/in</th>
<th>psi (lb/in²)</th>
<th>Fahrenheit (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55.997</td>
<td>14.2234</td>
<td>9/5+32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL TIGHTENING TORQUE SPECIFICATIONS

This chart specifies tightening torques for standard fasteners with a standard ISO thread pitch. Tightening torque specifications for special components or assemblies are provided for each chapter of this manual. To avoid warpage, tighten multi-fastener assemblies in a crisscross pattern and progressive stages until the specified tightening torque is reached. Unless otherwise specified, tightening torque specifications require clean, dry threads. Components should be at room temperature.

A: Width across flats
B: Thread diameter

<table>
<thead>
<tr>
<th>A (nut)</th>
<th>B (bolt)</th>
<th>General tightening torques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nm</td>
</tr>
<tr>
<td>10 mm</td>
<td>6 mm</td>
<td>6</td>
</tr>
<tr>
<td>12 mm</td>
<td>8 mm</td>
<td>15</td>
</tr>
<tr>
<td>14 mm</td>
<td>10 mm</td>
<td>30</td>
</tr>
<tr>
<td>17 mm</td>
<td>12 mm</td>
<td>55</td>
</tr>
<tr>
<td>19 mm</td>
<td>14 mm</td>
<td>85</td>
</tr>
<tr>
<td>22 mm</td>
<td>16 mm</td>
<td>130</td>
</tr>
<tr>
<td>Part to be tightened</td>
<td>Part name</td>
<td>Thread size</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Exhaust pipe stud bolt</td>
<td></td>
<td>M8</td>
</tr>
<tr>
<td>Oil check bolt</td>
<td></td>
<td>M6</td>
</tr>
<tr>
<td>Cylinder head cover</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Cylinder head and cylinder</td>
<td>Nut</td>
<td>M6</td>
</tr>
<tr>
<td>Cylinder head(timing chain side)</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Spark plug</td>
<td></td>
<td>M10</td>
</tr>
<tr>
<td>Camshaft sprocket</td>
<td>Bolt</td>
<td>M8</td>
</tr>
<tr>
<td>Timing chain tensioner(body)</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Guide stopper2</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Timing chain tensioner(plug)</td>
<td>plug</td>
<td>M8</td>
</tr>
<tr>
<td>Water pump assembly</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Thermostat cover air bleed bolt</td>
<td></td>
<td>M6</td>
</tr>
<tr>
<td>Thermostat cover</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Fan case</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Fan</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Radiator drain bolt</td>
<td></td>
<td>M10</td>
</tr>
<tr>
<td>Radiator cover</td>
<td>Screw</td>
<td>6</td>
</tr>
<tr>
<td>Oil pump assembly</td>
<td>Screw</td>
<td>M5</td>
</tr>
<tr>
<td>Engine oil drain plug</td>
<td></td>
<td>M35</td>
</tr>
<tr>
<td>Intake manifold</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Air filter assembly</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Injector</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Intake manifold side band</td>
<td>Band</td>
<td>M4</td>
</tr>
<tr>
<td>Air filter assembly side band</td>
<td>Band</td>
<td>M4</td>
</tr>
<tr>
<td>Protector</td>
<td>Screw</td>
<td>M6</td>
</tr>
<tr>
<td>Exhaust pipe</td>
<td>Nut</td>
<td>M8</td>
</tr>
<tr>
<td>Stay fender</td>
<td>Bolt</td>
<td>M8</td>
</tr>
<tr>
<td>Muffler</td>
<td>Bolt</td>
<td>M8</td>
</tr>
<tr>
<td>Reed valve and holder</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>AI filter case</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Oil guide</td>
<td>Nut</td>
<td>M6</td>
</tr>
<tr>
<td>Crankcase(left and right)</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Cylinder stud bolt</td>
<td></td>
<td>M6</td>
</tr>
<tr>
<td>Drain bolt(transmission oil fill bolt)</td>
<td></td>
<td>M8</td>
</tr>
<tr>
<td>V-belt case cover</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Drain bolt(transmission oil)</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Transmission case</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Transmission case</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Cover1(starter clutch)</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Hold lead plate bolt</td>
<td></td>
<td>M6</td>
</tr>
<tr>
<td>Part to be tightened</td>
<td>Part name</td>
<td>Thread size</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain bolt (engine oil)</td>
<td>-</td>
<td>M8</td>
</tr>
<tr>
<td>Centerstand spring</td>
<td>Hook</td>
<td>M6</td>
</tr>
<tr>
<td>Starter clutch</td>
<td>Nut</td>
<td>M22</td>
</tr>
<tr>
<td>Kickstarter</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Primary fixed sheave</td>
<td>Nut</td>
<td>M10</td>
</tr>
<tr>
<td>Clutch housing</td>
<td>Nut</td>
<td>M10</td>
</tr>
<tr>
<td>Stator coil</td>
<td>Bolt</td>
<td>M5</td>
</tr>
<tr>
<td>Pulser coil</td>
<td>Screw</td>
<td>M6</td>
</tr>
<tr>
<td>AC magneto rotor</td>
<td>Nut</td>
<td>M12</td>
</tr>
<tr>
<td>Starter motor assembly</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Ignition coil</td>
<td>Bolt</td>
<td>M6</td>
</tr>
<tr>
<td>Coolant temperature sensor</td>
<td>-</td>
<td>M12</td>
</tr>
</tbody>
</table>

Cylinder head tightening sequence
(1→2→3→4→2→5→6)
TIGHTENING TORQUES

CHASSIS

<table>
<thead>
<tr>
<th>Part to be tightened</th>
<th>Thread size</th>
<th>Tightening torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame and engine bracket3</td>
<td>M10</td>
<td>46 Nm 4.6 m·kg 33.1 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Engine bracket3 and engine</td>
<td>M10</td>
<td>58 Nm 5.8 m·kg 42.0 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Handlebar bracket and steering shaft</td>
<td>M10</td>
<td>60 Nm 6.0 m·kg 43.4 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Rear shock absorber and frame</td>
<td>M10</td>
<td>30 Nm 3.0 m·kg 21.7 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Rear shock absorber and engine</td>
<td>M8</td>
<td>16 Nm 1.6 m·kg 11.6 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Steering shaft and upper bearing inner race</td>
<td>BC1</td>
<td>7 Nm 0.7 m·kg 5.1 ft·lb See "NOTE"</td>
<td></td>
</tr>
<tr>
<td>Steering shaft and ring nut</td>
<td>BC1</td>
<td>30 Nm 3.0 m·kg 21.7 ft·lb See "NOTE"</td>
<td></td>
</tr>
<tr>
<td>Front fork and lower bracket</td>
<td>M10</td>
<td>30 Nm 3.0 m·kg 21.7 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Handlebar bracket and handlebar lower holder</td>
<td>M10</td>
<td>48 Nm 4.8 m·kg 34.7 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Handlebar lower holder and handlebar upper holder</td>
<td>M8</td>
<td>28 Nm 2.8 m·kg 20.3 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Throttle cable and holder lever2</td>
<td>M5</td>
<td>4 Nm 0.4 m·kg 2.9 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Throttle cable and throttle body</td>
<td>M5</td>
<td>5 Nm 0.5 m·kg 3.6 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Front reflector</td>
<td>M5</td>
<td>7 Nm 0.7 m·kg 5.1 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Fuel tank</td>
<td>M6</td>
<td>10 Nm 1.0 m·kg 7.2 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Fuel pump</td>
<td>M5</td>
<td>4 Nm 0.4 m·kg 2.9 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Single seat lock assembly</td>
<td>M6</td>
<td>12 Nm 1.2 m·kg 8.7 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Trunk</td>
<td>M6</td>
<td>12 Nm 1.2 m·kg 8.7 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Bottom plate and single seat lock bracket</td>
<td>M6</td>
<td>7 Nm 0.7 m·kg 5.1 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Bottom plate and frame(single seat)</td>
<td>M6</td>
<td>10 Nm 1.0 m·kg 7.2 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Single seat and frame(single seat)</td>
<td>M6</td>
<td>10 Nm 1.0 m·kg 7.2 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Single seat lock assembly and trunk</td>
<td>M6</td>
<td>7 Nm 0.7 m·kg 5.1 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Resin part and resin cover</td>
<td>About M5</td>
<td>2 Nm 0.2 m·kg 1.5 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Footrest board</td>
<td>M6</td>
<td>7 Nm 0.7 m·kg 5.1 ft·lb</td>
<td></td>
</tr>
<tr>
<td>License bracket</td>
<td>M6</td>
<td>7 Nm 0.7 m·kg 5.1 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Rear turn signal light</td>
<td>M6</td>
<td>4 Nm 0.4 m·kg 2.9 ft·lb</td>
<td></td>
</tr>
<tr>
<td>License light</td>
<td>About M5</td>
<td>2 Nm 0.2 m·kg 1.5 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Front wheel shaft</td>
<td>M10</td>
<td>48 Nm 4.8 m·kg 34.7 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Front brake camshaft lever</td>
<td>M6</td>
<td>8 Nm 0.8 m·kg 5.8 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Rear wheel shaft</td>
<td>M14</td>
<td>120 Nm 12.0 m·kg 86.8 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Rear brake camshaft lever</td>
<td>M6</td>
<td>10 Nm 1.0 m·kg 7.2 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Rear brake pin pivot</td>
<td>M8</td>
<td>16 Nm 1.6 m·kg 11.6 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Speedometer cable</td>
<td>M12</td>
<td>5 Nm 0.5 m·kg 3.6 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Main switch and headlight stay bracket</td>
<td>M6</td>
<td>7 Nm 0.7 m·kg 5.1 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Headlight body and headlight unit</td>
<td>M5</td>
<td>4 Nm 0.4 m·kg 2.9 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Headlight stay bracket and headlight body</td>
<td>M6</td>
<td>10 Nm 1.0 m·kg 7.2 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Lower bracket and headlight stay bracket</td>
<td>M8</td>
<td>23 Nm 2.3 m·kg 16.6 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Handlebar bracket and headlight stay bracket</td>
<td>M8</td>
<td>23 Nm 2.3 m·kg 16.6 ft·lb</td>
<td></td>
</tr>
<tr>
<td>ECU and trunk</td>
<td>M6</td>
<td>7 Nm 0.7 m·kg 5.1 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Rear reflector and license bracket</td>
<td>M5</td>
<td>2 Nm 0.2 m·kg 1.5 ft·lb</td>
<td></td>
</tr>
<tr>
<td>Taillight underside</td>
<td>M6</td>
<td>2 Nm 0.2 m·kg 1.5 ft·lb</td>
<td></td>
</tr>
</tbody>
</table>
NOTE:

1. First, tighten the upper bearing inner race approximately 7Nm (0.7m•kg, 5.1ft•lb) by using the torque wrench and check turn steering shaft smoothly.
2. Second, hold the upper bearing inner race and tighten the ring nut 30Nm (3.0m•kg, 21.7ft•lb) by using the torque wrench.
3. Final, operate the steering shaft together with the steering stem nut now.

① Upper bearing inner race
② Ring nut
<table>
<thead>
<tr>
<th>Lubrication Point</th>
<th>Lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil seal lips</td>
<td>8</td>
</tr>
<tr>
<td>O-rings(except V-belt drive unit)</td>
<td>8</td>
</tr>
<tr>
<td>O-ring(fuel injector assembly)</td>
<td>4</td>
</tr>
<tr>
<td>Cylinder head tightening nut mounting surface</td>
<td>4</td>
</tr>
<tr>
<td>Cylinder head stud bolt thread</td>
<td>4</td>
</tr>
<tr>
<td>Cylinder head gasket dowel pin</td>
<td>4</td>
</tr>
<tr>
<td>Crankshaft pin outside surface</td>
<td>4</td>
</tr>
<tr>
<td>Connecting rod</td>
<td>4</td>
</tr>
<tr>
<td>Piston outside and ring groove</td>
<td>4</td>
</tr>
<tr>
<td>Piston pin outside surface</td>
<td>4</td>
</tr>
<tr>
<td>surface and bolt thread</td>
<td>4</td>
</tr>
<tr>
<td>Crankshaft journal</td>
<td>4</td>
</tr>
<tr>
<td>Piston(balancer) outside surface</td>
<td>4</td>
</tr>
<tr>
<td>Piston pin(balancer) outside surface</td>
<td>4</td>
</tr>
<tr>
<td>Camshaft lobe</td>
<td>4</td>
</tr>
<tr>
<td>Camshaft profile journal</td>
<td>M</td>
</tr>
<tr>
<td>Valve stems(intake and exhaust)</td>
<td>M</td>
</tr>
<tr>
<td>Valve stem seals(intake and exhaust)</td>
<td>M</td>
</tr>
<tr>
<td>Valve pads(intake and exhaust)</td>
<td>M</td>
</tr>
<tr>
<td>Valve stem ends(intake and exhaust)</td>
<td>4</td>
</tr>
<tr>
<td>Oil pump assembly inside surface</td>
<td>4</td>
</tr>
<tr>
<td>Oil pipe union bolt thread and surface</td>
<td>4</td>
</tr>
<tr>
<td>Starter clutch pin and weight</td>
<td>M</td>
</tr>
<tr>
<td>Kick pinion gear and kick pinion gear clip thrust surface</td>
<td>M</td>
</tr>
<tr>
<td>Idle gear 1 thrust surface</td>
<td>4</td>
</tr>
<tr>
<td>Idle gear2</td>
<td>4</td>
</tr>
<tr>
<td>Main and drive axle serration(sprocket)</td>
<td>G</td>
</tr>
<tr>
<td>Lubrication Point</td>
<td>Lubricant</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Drive axle taper roller bearing</td>
<td>BEL-RAY assembly lube®</td>
</tr>
<tr>
<td>Transmission bearings</td>
<td>BEL-RAY assembly lube®</td>
</tr>
<tr>
<td>Secondary fixed sheave inner surface</td>
<td>BEL-RAY assembly lube®</td>
</tr>
<tr>
<td>Secondary sliding sheave torque cam ditch</td>
<td>BEL-RAY assembly lube®</td>
</tr>
<tr>
<td>Crankcase mating surfaces</td>
<td>Sealant</td>
</tr>
</tbody>
</table>
LUBRICATION POINTS AND LUBRICANT TYPES

CHASSIS

<table>
<thead>
<tr>
<th>Lubrication Point</th>
<th>Lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front wheel oil seal lips</td>
<td>![Lubricant Icon]</td>
</tr>
<tr>
<td>Steering bearing and bearing races (upper and lower)</td>
<td>![Lubricant Icon]</td>
</tr>
<tr>
<td>Frame head pipe dust seal lips (lower)</td>
<td>![Lubricant Icon]</td>
</tr>
<tr>
<td>Tube guide (throttle grip) inner surface</td>
<td>![Lubricant Icon]</td>
</tr>
<tr>
<td>Brake lever and lever holder bolt sliding surface</td>
<td>![Lubricant Icon]</td>
</tr>
<tr>
<td>Centerstand pivoting point and sliding surface</td>
<td>![Lubricant Icon]</td>
</tr>
<tr>
<td>Single seat lock cable inner surface</td>
<td>![Lubricant Icon]</td>
</tr>
<tr>
<td>Engine bracket and engine mound bolt sliding surface</td>
<td>![Lubricant Icon]</td>
</tr>
</tbody>
</table>
COOLING SYSTEM DIAGRAMS

EAS00033

COOLING SYSTEM DIAGRAMS

1. Radiator cap
2. Coolant reservoir hose
3. Radiator inlet hose
4. Air bleed bolt
5. Radiator outlet hose
6. Fan case
7. Damper
8. Radiator cover

A. Insert until contacting with the latch of radiator tank.
B. Install white paint mark of pipe 3 toward the direction of radiator cover.
C. Install clip for the turning knob to face forward.
D. Hand and fix the claw of fan case 1 on the radiator cover.
E. Insert to the bent part of radiator pipe.
F. Make sure that hose is inserted to the bottom.
G. Install clip for the turning knob to face downward.
COOLING SYSTEM DIAGRAMS

1. Radiator
2. Radiator inlet hose
3. Radiator outlet hose
4. Thermostat
5. Water pump outlet hose

A. Install clip for the turning knob to face downward.

Forward
1. Thermostat assembly inlet breather hose
2. Breather hose
3. Water pump outlet hose
4. Radiator outlet hose
5. Water pump

- **A** Install the paint mark of hose facing up.
- **B** Install clip for the turning knob to face downward.
- **C** Make sure that hose is inserted to the bottom.
- **D** Align the paint mark of pipe 7 to the stopper of water pump Ass'y.
- **E** Insert until contacting with the stopper.
CABLE ROUTING

1. Hose3
2. ECU
3. Ignition coil
4. Sidestand switch lead
5. Main switch
6. Hose
7. Coolant temperature sensor
8. Wiring harness
9. Throttle cable kit
10. Rear brake cable
11. AC magneto lead
12. Hose5
13. Starter motor lead

Battery positive lead
Wire lead cover
Assemble cramp on the T-stud at the right of back stay.
Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of box bracket 1.
Install crap on the holes of stay 1.
Penetrate thermo unit lead through the rear of hose 3.
Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of down tube 1.
Fix connector cover on the head light stay.
Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of fuel tank bracket 2.
Connect AC magnet lead on the cramp of fan case 1.

Assemble cramp on the T-stud at the right of back stay.
Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of box bracket 1.
Install crap on the holes of stay 1.
Penetrate thermo unit lead through the rear of hose 3.
Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of down tube 1.
Fix connector cover on the head light stay.
Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of fuel tank bracket 2.
Connect AC magnet lead on the cramp of fan case 1.

Assemble cramp on the T-stud at the right of back stay.
Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of box bracket 1.
Install crap on the holes of stay 1.
Penetrate thermo unit lead through the rear of hose 3.
Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of down tube 1.
Fix connector cover on the head light stay.
Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of fuel tank bracket 2.
Connect AC magnet lead on the cramp of fan case 1.
CABLE ROUTING

1. Speedometer
2. Rectifier/Regulator
3. Turn signal relay
4. Throttle cable Ass'y
5. Holder
6. Cable holder
7. Rear brake cable
8. Speedometer cable
9. Front brake cable
10. Headlight
11. Horn
12. Starting circuit cut-off relay

A. After wiring the cover, cover the coupler.
B. Enter tail/brake light.
C. After fixing the rear brake cable, fix crank case 1. When locking, make sure that the stopper at the front of holder touches the position of crank case 1.
D. After fixing the rear brake cable, install the protruding part of cramp on the hole of under cover.
E. Install the horn of coupler according to the direction shown in the drawing, and make sure that it is not loosen easily.
F. Penetrate through the speed meter cable.
1 Fuel pump
2 FI diagnostic tool connector
3 Fuse box
4 Battery negative lead
5 ECU lead
6 Battery positive lead
7 Starter relay
8 AC magneto lead
9 Tail/brake light lead
10 Starter motor lead
11 Holder
12 Cable holder
13 Lean angle cut-off switch
14 Ignition coil
15 Throttle cable Ass'y
16 Rear brake cable
17 Wiring harness
18 Rear fender
19 Fuel injector lead
20 Sub-wire harness lead
21 ISC(idle speed control) valve lead
22 Crankcase2
23 Enter slant angle of sensor.
24 Enter tail/brake light.
25 Fix throttle cable Ass'y. Install the protruding part of cramp on the hole of fuel tank bracket.
26 Fix throttle cable Ass'y. Install the protruding part of cramp on the hole of foot rest bracket.
27 Put the idle speed control lead and wire sub lead in, and then close the cramp.
28 Wire the starting device of the rear fender of rear motor lead and crank case 2. Do not clip the lead in.
CABLE ROUTING

1. Speedometer
2. Rectifier/Regulator
3. Horn
4. Turn signal relay
5. Front brake cable
6. Rear brake cable
7. Throttle cable Ass’y
8. Speedometer cable
9. Rectifier/Regulator lead
10. Wiring harness
11. Main switch lead
12. Horn lead

A. Penetrate the rear brake cable and throttle cable through the left side of car body.
B. Make sure to install the cramp on the head light stay.
C. Install the protruding part of cable strap of electrical wire harness Ass’y on the hole of head light stay.
D. Penetrate the main switch Comp. Lead into the connector cover.
E. Penetrate horn cable through the connector cover without sticking out horn cable.
F. Enter rectifier and regulator Ass’y.
Let the left and right flasher lights, meter, and right lead wire of handle bar switch to face upward, let the main switch, front and rear brake switch and left lead wire of handle bar switch to face downward, connect to the coupler, and then store in the connector cover.
CABLE ROUTING SPEC

1. Turn signal light lead (right)
2. Handlebar switch lead (right)
3. Front brake light switch lead
4. Turn signal light lead (left)
5. Handlebar switch lead (left)
6. Rear brake light switch
7. Throttle cable Ass'y
8. Front brake cable
9. Rear brake cable
10. Backward screw
11. Forward screw

A. Penetrate the rear brake cable and throttle cable through the left side of car body.
B. Make sure to install the cramp on the head light stay.
C. Install the protruding part of cable strap of electrical wire harness Ass'y on the hole of head light stay.
D. Penetrate the main switch Comp. Lead into the connector cover.
E. Penetrate horn cable through the connector cover without sticking out horn cable.
F. Enter rectifier and regulator Ass’y.
G. First, tightening the backward screw and tightening the forward screw.
CHAPTER 3
PERIODIC CHECKS AND ADJUSTMENTS

INTRODUCTION ... 3-1
PERIODIC MAINTENANCE AND MINOR REPAIR ... 3-2
 PERIODIC MAINTENANCE CHART FOR THE EMISSION CONTROL SYSTEM ... 3-2
 GENERAL MAINTENANCE AND LUBRICATION CHART ... 3-3
COVER AND PANEL ... 3-5
 SIDE COVERS AND TAIL/BRAKE LIGHT .. 3-5
 SINGLE SEAT AND TRUNK ... 3-7
 LEG SHIELD1,2 .. 3-8
 FOOTREST BOARD AND INNER FENDER .. 3-9
ENGINE .. 3-10
 ADJUSTING THE VALVE CLEARANCE .. 3-10
 CHECKING THE ENGINE IDLING SPEED ... 3-16
 ADJUSTING THE THROTTLE CABLE FREE PLAY .. 3-17
 CHECKING THE SPARK PLUG .. 3-18
 CHECKING THE IGNITION TIMING .. 3-20
 MEASURING THE COMPRESSION PRESSURE .. 3-22
 CHECKING THE ENGINE OIL LEVEL ... 3-24
 CHANGING THE ENGINE OIL .. 3-25
 CHANGING THE TRANSMISSION OIL ... 3-27
 MEASURING THE ENGINE OIL PRESSURE .. 3-28
 REPLACING THE AIR FILTER ELEMENT ... 3-30
 CHECKING THE THROTTLE BODY JOINT AND INTAKE MANIFOLD ... 3-32
 CHECKING THE FUEL HOSE ... 3-32
 CHECKING THE BREATHER HOSES .. 3-33
 CHECKING THE EXHAUST SYSTEM ... 3-34
 CHECKING THE COOLANT LEVEL ... 3-35
 CHECKING THE COOLING SYSTEM .. 3-36
 CHANGING THE COOLANT .. 3-37
CHASSIS .. 3-40
 ADJUSTING THE FRONT BRAKE ... 3-40
 ADJUSTING THE REAR BRAKE .. 3-40
 CHECKING THE FRONT AND REAR BRAKE SHOES ... 3-41
 CHECKING AND ADJUSTING THE STEERING HEAD .. 3-42
 CHECKING THE FRONT FORK ... 3-44
 CHECKING THE TIRES .. 3-45
CHECKING THE WHEELS ... 3-48
CHECKING AND LUBRICATING THE CABLES 3-48
LUBRICATING THE LEVERS AND PEDALS 3-49
LUBRICATING THE CENTERSTAND .. 3-49

ELECTRICAL SYSTEM ... 3-50
CHECKING AND CHARGING THE BATTERY 3-50
CHECKING THE FUSE ... 3-56
REPLACING THE HEADLIGHT BULB ... 3-58
ADJUSTING THE HEADLIGHT BEAM 3-59
PERIODIC CHECKS AND ADJUSTMENTS

INTRODUCTION

This chapter includes all information necessary to perform recommended checks and adjustments. If followed, these preventive maintenance procedures will ensure more reliable vehicle operation, a longer service life and reduce the need for costly overhaul work. This information applies to vehicles already in service as well as to new vehicles that are being prepared for sale. All service technicians should be familiar with this entire chapter.

NOTE:

The annual checks must be performed every year, except if a kilometer-based maintenance is performed instead.

From 30,000 km, repeat the maintenance intervals starting from 6,000 km.

Items marked with an asterisk should be performed by a Yamaha dealer as they require special tools, data and technical skills.
PERIODIC MAINTENANCE AND MINOR REPAIR

PERIODIC MAINTENANCE CHART FOR THE EMISSION CONTROL SYSTEM

<table>
<thead>
<tr>
<th>NO.</th>
<th>ITEM</th>
<th>ROUTINE</th>
</tr>
</thead>
</table>
| 1 | Fuel line | • Check fuel and vacuum hoses for cracks or damage.
• Replace if necessary. |
| 2 | Spark plug | • Check condition.
• Adjust gap and clean.
• Replace at 4000 mi (7000 km) or 12 months and thereafter every 4000 mi (6000 km) or 12 months. |
| 3 | Valve clearance | • Check and adjust valve clearance when engine is cold.
• Replace. |
| 4 | Crankcase breather | • Check breather hose for cracks or damage.
• Replace if necessary. |
| 5 | Fuel injection | • Check engine idle speed.
• Replace. |
| 6 | Exhaust system | • Check for leakage.
• Tighten if necessary.
• Replace gasket(s) if necessary. |
| 7 | Air induction system | • Check the air cut-off valve, reed valve, and hose for damage.
• Replace any damaged parts. |

* Since these items require special tools, data and technical skills, have a Yamaha dealer perform the service.
<table>
<thead>
<tr>
<th>NO.</th>
<th>ITEM</th>
<th>ROUTINE</th>
<th>INITIAL</th>
<th>ODOMETER READING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 mi (1,000 km) or 1 month</td>
<td>2,000 mi (4,000 km) or 6 months</td>
</tr>
<tr>
<td>1</td>
<td>Air filter element</td>
<td>• Replace.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>Front brake</td>
<td>• Check operation. • Adjust cable and replace brake shoes if necessary.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>Rear brake</td>
<td>• Check operation. • Adjust cable and replace brake shoes if necessary.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>Wheels</td>
<td>• Check runout and for damage. • Replace if necessary.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>Tires</td>
<td>• Check tread depth and for damage. • Replace if necessary. • Check air pressure. • Correct if necessary.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>Wheel bearings</td>
<td>• Check bearings for smooth operation. • Replace if necessary.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>Steering bearings</td>
<td>• Check bearing assemblies for looseness. • Moderately repack with lithium-soap-based grease every 8000 mi (13000 km) or 24 months.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>Chassis fasteners</td>
<td>• Check all chassis fitting and fasteners. • Correct if necessary.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>Front and rear brake lever pivot</td>
<td>• Apply lithium-soap-based grease (all-purpose grease) lightly.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>Centerstand</td>
<td>• Check operation. • Lubricate.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>Front fork</td>
<td>• Check operation and for oil leakage. • Replace if necessary.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>Shock absorber assembly</td>
<td>• Check operation and for oil leakage. • Replace if necessary.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>Engine oil</td>
<td>• Change (warm engine before draining). • Check oil level and vehicle for oil leakage.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>Engine oil strainer</td>
<td>• Clean.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>Cooling system</td>
<td>• Check coolant level and vehicle for coolant leakage. • Change.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Final transmission oil</td>
<td>• Check vehicle for oil leakage. • Change.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>V-belt</td>
<td>• Replace.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Front and rear brake switches</td>
<td>• Check operation.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>19</td>
<td>Control and meter cables</td>
<td>• Apply Yamaha chain and cable lube or engine oil 10W-30 thoroughly.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>20</td>
<td>Throttle grip housing and cable</td>
<td>• Check operation and free play. • Adjust the throttle cable free play if necessary. • Lubricate the throttle grip housing and cable.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>Lights, signals and switches</td>
<td>• Check operation. • Adjust headlight beam.</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
PERIODIC MAINTENANCE AND MINOR REPAIR

* Since these items require special tools, data and technical skills, have a Yamaha dealer perform the service.

NOTE:
From 12000mi (19000km) or 36 months, repeat the maintenance intervals starting from 4000mi (7000km) or 12 months.

NOTE:
The air filter needs more frequent service if you are riding in unusually wet or dusty areas.
Removing the side covers and tail/brake light

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front cover</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Side cover (left)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Side cover (right)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tail/brake and rear turn signal light (left and right)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Battery cover</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Battery negative lead</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Battery positive lead</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Battery</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION:

- First, disconnect the negative battery lead, and then the positive battery lead.
- After installing the battery be sure to turn the main switch from “ON” to “OFF” three times in 3 seconds intervals to initialize the idle speed.
For installation, reverse the removal procedure.
SINGLE SEAT AND TRUNK

Removing the single seat and trunk

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single seat</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Single seat upper cover</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bottom plate</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Frame(single seat)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ECU</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>6</td>
<td>Starter relay</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>7</td>
<td>Main fuse</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>8</td>
<td>Single seat lock assembly</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Helmet holder</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Trunk</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

For installation, reverse the removal procedure.

Remove the parts in the order listed. Refer to “SIDE COVERS AND TAIL/BRAKE LIGHT”.

- Single seat: 10Nm (1.0m • kg, 7.2 ft • lb)
- Single seat upper cover: 7Nm (0.7m • kg, 5.1 ft • lb)
- Bottom plate: 12Nm (1.2m • kg, 8.7 ft • lb)
Removing the leg shield1,2
Front fork upper cover
Reflector(left)
Front fork cover(left)
Reflector(right)
Front fork cover(right)
Leg shield1
Main switch cover
Leg shield2

Remove the parts in the order listed.

NOTE:
Caution, do not damage the claw while removing.

For installation, reverse the removal procedure.
<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Removing the footrest board and inner fender</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Single seat/trunk</td>
<td>1</td>
<td>Refer to “SINGLE SEAT AND TRUNK “.</td>
</tr>
<tr>
<td>3</td>
<td>Fuel tank cap cover</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fuel tank cap</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Coolant reservoir cap cover</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Panel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Footrest board</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Coolant reservoir</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>9</td>
<td>Inner fender</td>
<td>1</td>
<td>For installation, reverse the removal pro-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cedure.</td>
</tr>
</tbody>
</table>
ADJUSTING THE VALVE CLEARANCE

ENGINE
ADJUSTING THE VALVE CLEARANCE

The following procedure applies to all of the valves.

NOTE:

- Valve clearance adjustment should be made on a cold engine, at room temperature.
- When the valve clearance is to be measured or adjusted, the piston must be at top dead center (TDC) on the compression stroke.

1. Remove:
 - front cover
 - side cover (left and right)
 - battery / battery cover
 - single seat/trunk
 - footrest board
 - Refer to "COVER AND PANEL".

2. Drain:
 - coolant
 (completely from the radiator)

3. Remove:
 - radiator cover
 - radiator
 - fan case
 - Refer to "RADIATOR" in chapter 6.

4. Remove:
 - spark plug cap
 - spark plug
 - ignition coil
 - cylinder head cover

5. Remove:
 - water pump
 - Refer to "WATER PUMP" in chapter 6.

6. Measure:
 - valve clearance
 Out of specification → Adjust.

Valve clearance (cold)
Intake valve
0.10 ~ 0.16mm (0.0039 ~ 0.0063in)
Exhaust valve
0.18 ~ 0.24mm (0.0071 ~ 0.0094in)
ADJUSTING THE VALVE CLEARANCE

1. Turn the crankshaft counterclockwise.
2. When the piston is at TDC on the compression stroke, align the punch mark in the camshaft sprocket with the stationary on the plate.
3. Align the TDC mark on the AC magneto rotor with the stationary pointer on the crankcase cover.
4. Measure the valve clearance with a thickness gauge .

Out of specification → Adjust.

7. Adjust:

valve clearance

a. Remove the timing chain tensioner and camshaft sprocket.
b. Remove the head nuts, bolts and plate.
c. Remove the rocker arm shaft, rocker arm and collar.
d. Remove the valve pad with a magnetic bar.

NOTE:

- Cover the timing chain opening with a rag to prevent the valve pad from falling into the crankcase.
- Make a note of the position of each valve pad so that they can be installed in the correct place.

e. Select the proper valve pad from the following table.

<table>
<thead>
<tr>
<th>Valve pad thickness range</th>
<th>Available valve pads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nos. 120 ~ 240</td>
<td>1.20 (0.0472 in) ~ 2.40 mm (0.0945 in)</td>
</tr>
<tr>
<td></td>
<td>25 thicknesses in 0.05 mm (0.002 in) increments</td>
</tr>
</tbody>
</table>

f. Round off the original valve pad number according to the following table.
ADJUSTING THE VALVE CLEARANCE

<table>
<thead>
<tr>
<th>Last digit</th>
<th>Rounded value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

EXAMPLE:
Original valve pad number = 148 (thickness = 1.48 mm (0.0583 in))

Rounded value = 150

- **g.** Locate the rounded number of the original valve pad and the measured valve clearance in the valve pad selection table. The point where the column and row intersect is the new valve pad number.

NOTE:
The new valve pad number is only an approximation. The valve clearance must be measured again and the above steps should be repeated if the measurement is still incorrect.

- **h.** Install the new valve pad.

NOTE:
- Lubricate the valve pad with molybdenum disulfide oil.
- Install the valve pad in the correct place.

- **i.** Install the rocker arm, collar and rocker arm shaft.

- **j.** Install the plate and cylinder head nuts

\[10 \text{Nm} (1.0 \text{m} \cdot \text{kg}, 7.2 \text{ft} \cdot \text{lb}) \]

- **k.** Install the cylinder head bolts.

\[10 \text{Nm} (1.0 \text{m} \cdot \text{kg}, 7.2 \text{ft} \cdot \text{lb}) \]

- **l.** Install the camshaft sprocket.

\[30 \text{Nm} (3.0 \text{m} \cdot \text{kg}, 21.7 \text{ft} \cdot \text{lb}) \]

- **m.** Install the timing chain tensioner and gasket.

\[9 \text{Nm} (0.9 \text{m} \cdot \text{kg}, 6.5 \text{ft} \cdot \text{lb}) \]
n. Install the timing chain tensioner spring and cap bolt.

\[8\text{Nm}(0.8\text{m} \cdot \text{kg}, 5.8\text{ft} \cdot \text{lb})\]

o. Measure the valve clearance again.

p. If the valve clearance is still out of specification, repeat all of the valve clearance adjustment steps until the specified clearance is obtained.
ADJUSTING THE VALVE CLEARANCE

INTAKE

<table>
<thead>
<tr>
<th>Measured Clearance</th>
<th>Original Valve Pad Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00~0.04</td>
<td>120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240</td>
</tr>
<tr>
<td>0.05~0.09</td>
<td>120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240</td>
</tr>
<tr>
<td>0.10~0.16</td>
<td>120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240</td>
</tr>
</tbody>
</table>

EXHAUST

<table>
<thead>
<tr>
<th>Measured Clearance</th>
<th>Original Valve Pad Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00~0.02</td>
<td>120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240</td>
</tr>
<tr>
<td>0.03~0.07</td>
<td>120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240</td>
</tr>
<tr>
<td>0.08~0.12</td>
<td>120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240</td>
</tr>
<tr>
<td>0.13~0.17</td>
<td>120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 238</td>
</tr>
</tbody>
</table>

VALVE CLEARANCE (clearance):

- **INTAKE:** 0.10~0.16mm (0.0039~0.0063in)
- **Example:** 175 pad is installed
- **Measured clearance is 0.24mm (0.0094in)
- **EXHAUST:** 0.18~0.24mm (0.0071~0.0094in)
- **Example:** 175 pad is installed
- **Measured clearance is 0.32mm (0.0126in)
- **Replace pad 175 with pad 185**
- **Pad number:** (example)
 - Pad No. 175 = 1.76mm (0.069in)
 - Pad No. 185 = 1.86mm (0.0728in)
ADJUSTING THE VALVE CLEARANCE

8. Install:
 • all removed parts

NOTE: For installation, reverse the removal procedure.

9. Fill:
 • cooling system
 (with the specified amount of the recommended coolant)
 Refer to "CHANGING THE COOLANT".
CHECKING THE ENGINE IDLING SPEED

NOTE:
Prior to adjusting the engine idling speed, the air filter element should be clean, and the engine should have adequate compression.

1. Start the engine and let it warm up for several minutes.
2. Remove:
 • panel
 Refer to "FOOTREST BOARD AND INNER FENDER".
3. Connect:
 • digital circuit tester
 (onto the spark plug lead of cylinder)

[![Digital circuit tester](image)]

4. Check:
 • engine idling speed
 Out of specification → Replace the throttle body assembly.

[![Engine idling speed](image)]

5. Install:
 • panel
 Refer to "FOOTREST BOARD AND INNER FENDER".
ADJUSTING THE THROTTLE CABLE FREE PLAY

NOTE:
Prior to adjusting the throttle cable free play, the engine idling speed should be adjusted properly.

1. Check:
 • throttle cable free play ③
 Out of specification → Adjust.

 Throttle cable free play (at the flange of the throttle grip)
 1.5~3.5mm (0.06~0.14in)

2. Adjust:
 • throttle cable free play

 Handlebar side
 a. Loosen the locknut ①.
 b. Turn the adjusting nut ② in direction ③ or ④ until the specified throttle cable free play is obtained.

 Direction ③ Throttle cable free play is increased.
 Direction ④ Throttle cable free play is decreased.
 c. Tighten the locknut.

WARNING
After adjusting the throttle cable free play, start the engine and turn the handlebars to the right and to the left to ensure that this does not cause the engine idling speed to change.
CHECKING THE SPARK PLUG

1. Remove:
 - panel
 Refer to "FOOTREST BOARD AND INNER FENDER".
2. Disconnect:
 - spark plug cap

WARNING
Remove the spark plug cap, the engine is extremely hot.

3. Remove:
 - spark plug

CAUTION:
Before removing the spark plug, blow away any dirt accumulated in the spark plug well with compressed air to prevent it from falling into the cylinder.

4. Check:
 - spark plug type
 Incorrect → Change.

 ![Spark plug type (manufacturer)
CR7E(NGK)](image)

5. Check:
 - electrode ①
 Damage/wear → Replace the spark plug.
 - insulator ②
 Abnormal color → Replace the spark plug.
 Normal color is medium-to-light tan.

6. Clean:
 - spark plug
 (with a spark plug cleaner or wire brush)

7. Measure:
 - spark plug gap ③
 (with a wire Thickness gauge)
 Out of specification → Regap.

 ![Spark plug gap
0.7 ~0.8mm(0.028 ~0.031in)](image)
8. Install:
 • spark plug

\[13\text{Nm}(1.3\text{m} \cdot \text{kg}, 9.4\text{ft} \cdot \text{lb}) \]

NOTE:
Before installing the spark plug, clean the spark plug and gasket surface.

9. Connect:
 • spark plug cap
10. Install:
 • panel

 Refer to "FOOTREST BOARD AND INNER FENDER".

CHECKING THE IGNITION TIMING

NOTE:
Prior to checking the ignition timing, check the wiring connections of the entire ignition system. Make sure all connections are tight and free of corrosion.

1. Remove:
 • front cover
 • side cover (left and right)
 • battery / battery cover
 • single seat / trunk
 Refer to "COVER AND PANEL".

2. Drain:
 • coolant
 (completely from the radiator)

3. Remove:
 • radiator cover
 • radiator
 • fan case
 Refer to "RADIATOR" in chapter 6.

4. Attach:
 • timing light 1
 • digital circuit tester 2
 (onto the spark plug lead of cylinder)

Timing light
90890-03141
YU-03141
Digital circuit tester
90890-06760
5. Check:
- ignition timing

\[\text{..} \]

a. Start the engine, warm it up for several minutes, and then let it run at the specified engine idling speed.

<table>
<thead>
<tr>
<th>Engine idling speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 ~ 2200 r/min</td>
</tr>
</tbody>
</table>

b. Check that the mark \(\text{①} \) on the AC magneto rotor is within the firing range \(\text{②} \) on the right crankcase cover.
Incorrect firing range → Check the ignition system.

\[\text{..} \]

NOTE:
The ignition timing is not adjustable.

6. Remove:
- timing light
- digital circuit tester

7. Install:
- fan case
- radiator
- radiator cover
 Refer to "RADIATOR" in chapter 6.

8. Fill:
- cooling system
 (with the specified amount of the recommended coolant)
 Refer to "CHANGING THE COOLANT".

9. Install:
- single seat/trunk
- battery /battery cover
- side cover (left and right)
- front cover
 Refer to "COVER AND PANEL".
MEASURING THE COMPRESSION PRESSURE

NOTE:
Insufficient compression pressure will result in a loss of performance.

1. Measure:
 • valve clearance
 Out of specification → Adjust
 Refer to “ADJUSTING THE VALVE CLEARANCE”.

2. Start the engine, warm it up for several minutes, and then turn it off.

3. Remove:
 • panel
 Refer to "FOOTREST BOARD AND INNER FENDER".

4. Disconnect:
 • spark plug cap

WARNING
Remove the spark plug cap, the engine is extremely hot.

5. Remove:
 • spark plug

CAUTION:
Before removing the spark plug, use compressed air to blow away any dirt accumulated in the spark plug well to prevent it from falling into the cylinder.

6. Install:
 • compression gauge ①

Compression gauge
90890-03081
YU-33223

7. Measure:
 • compression pressure
 Out of specification → Refer to steps (c) and (d).

<table>
<thead>
<tr>
<th>Compression pressure (at sea level)</th>
<th>Minimum</th>
<th>Standard</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1262kPa (12.62kg/cm², 179.7psi)</td>
<td>1450kPa (14.5kg/cm², 206.5psi)</td>
<td>1624kPa (16.24kg/cm², 231.3psi)</td>
</tr>
</tbody>
</table>
MEASURING THE COMPRESSION PRESSURE

a. Set the main switch to "ON".
b. With the throttle wide open, crank the engine until the reading on the compression gauge stabilizes.

WARNING

To prevent sparking, ground the spark plug lead before cranking the engine.

c. If the compression pressure is above the maximum specification, check the cylinder head, valve surfaces, and piston crown for carbon deposits.
Carbon deposits → Eliminate.
d. If the compression pressure is below the minimum specification, pour a teaspoonful of engine oil into the spark plug bore and measure again.
Refer to the following table.

<table>
<thead>
<tr>
<th>Compression pressure (with oil applied into the cylinder)</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher than without oil</td>
<td>Piston ring(s) wear or damage → Repair.</td>
</tr>
<tr>
<td>Same as without oil</td>
<td>Piston ring(s), valves, cylinder head gasket or piston possibly defective → Repair.</td>
</tr>
</tbody>
</table>

8. Remove:
- compression gauge
9. Install:
- spark plug

10. Connect:
- spark plug cap
11. Install:
- panel
 Refer to "FOOTREST BOARD AND INNER FENDER".
CHECKING THE ENGINE OIL LEVEL

1. Stand the scooter on a level surface.

NOTE:
- Place the scooter on a suitable stand.
- Make sure the scooter is upright.

2. Start the engine, warm it up for several minutes, and then turn it off.

3. Check:
 - Engine oil level
 The engine oil level should be between the minimum level mark (a) and maximum level mark (b).
 Below the minimum level mark → Add the recommended engine oil to the proper level.

 Recommended engine oil type
 YAMALUBE 4, SAE10W30 or SAE20W40
 Recommended engine oil grade
 API service SG type or higher
 JASO standard MA

CAUTION:
- Do not allow foreign materials to enter the crankcase.

NOTE:
Before checking the engine oil level, wait a few minutes until the oil has settled.

4. Start the engine, warm it up for several minutes, and then turn it off.
5. Check the engine oil level again.

NOTE:
Before checking the engine oil level, wait a few minutes until the oil has settled.
CHANGING THE ENGINE OIL

1. Start the engine, warm it up for several minutes, and then turn it off.
2. Place a container under the engine oil drain bolt.
3. Remove:
 - engine oil filler cap ①
 - engine oil drain bolt ② (along with the gasket)
4. Drain:
 - engine oil (completely from the crankcase)
5. If the oil filter element is also to be replaced or cleaned, perform the following procedure.
 a. Remove the oil strainer cover ①, spring ③ and oil filter element ④.
 b. Replace the O-ring ② (New)
 c. Install the new or clean oil filter element and the oil strainer cover.

| Oil strainer cover | 32Nm (3.2m • kg, 23.1ft • lb) |

6. Install:
 - engine oil drain bolt (along with the gasket)

| 23Nm (2.3m • kg, 16.6ft • lb) |

7. Fill:
 - crankcase (with the specified amount of the recommended engine oil)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Total amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.80.9L (0.740.83 Imp qt, 0.87~0.98 US qt)</td>
</tr>
<tr>
<td></td>
<td>Periodic oil change 0.730.83L (0.670.76 Imp qt, 0.80~0.90 US qt)</td>
</tr>
</tbody>
</table>
8. Install:
 - engine oil filler cap
9. Start the engine, warm it up for several minutes, and then turn it off.
10. Check:
 - engine
 (for engine oil leaks)
11. Check:
 - engine oil level
 Refer to “CHECKING THE ENGINE OIL LEVEL”.
12. Check:
 - engine oil pressure

```plaintext

- Slightly loosen the oil gallery bolt <RN.1>.
- Start the engine and keep it idling until engine oil starts to seep from the oil gallery bolt. If no engine oil comes out after one minute, turn the engine off so that it will not seize.
- Check the engine oil passages, the oil filter cartridge and the oil pump for damage or leakage. Refer to “OIL PUMP” in chapter 5.
- Start the engine after solving the problem(s) and check the engine oil pressure again.
- Tighten the oil gallery bolt to specification.

<table>
<thead>
<tr>
<th>Oil gallery bolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Nm (0.7m • kg, 5.1ft • lb)</td>
</tr>
</tbody>
</table>
```

▲▲▲^
CHANGING THE TRANSMISSION OIL

1. Stand the scooter on a level surface.

NOTE:
- Stand the scooter on a suitable stand.
- Make sure that the scooter upright.

2. Start the engine, warm it up for several minutes, and then turn it off.
3. Place a container under the transmission oil drain bolt.

4. Remove:
 - transmission oil fill bolt (along with the gasket)
 - transmission oil drain bolt

5. Drain:
 - transmission oil (completely from the transmission case)

6. Install:
 - transmission oil drain bolt

 \[13 \text{Nm}(1.3 \text{m} \cdot \text{kg}, 9.4 \text{ft} \cdot \text{lb})\]

7. Fill:
 - transmission case (with the specified amount of the recommended transmission oil)

8. Install:
 - transmission oil fill bolt (along with the gasket)

 \[23 \text{Nm}(2.3 \text{m} \cdot \text{kg}, 16.6 \text{ft} \cdot \text{lb})\]

9. Start the engine for several minutes to warm it up and check for the oil leakage.

10. Check:
 - transmission case (for transmission oil leaks)

Recommended oil
- SAE10W30 hypoid gear oil

- Total amount
 - 0.11~0.13L (0.10~0.12 Imp qt, 0.12~0.14 US qt)

- Periodic oil change
 - 0.09~0.11L (0.08~0.10 Imp qt, 0.10~0.12 US qt)
MEASURING THE ENGINE OIL PRESSURE

1. Check:
 • engine oil level
 Below the minimum level mark → Add the recommended engine oil to the proper level.
 Refer to "CHECKING THE ENGINE OIL LEVEL".

2. Start the engine, warm it up for several minutes, and then turn it off.

CAUTION:
When the engine is cold, the engine oil will have a higher viscosity, causing the engine oil pressure to increase. Therefore, be sure to measure the engine oil pressure after warming up the engine.

3. Remove:
 • panel
 Refer to "FOOTREST BOARD AND INNER FENDER".

4. Lossen:
 • oil gallery bolt ①

WARNING
The engine, muffler and engine oil are extremely hot.

5. Check:
 • engine oil pressure
 a. Start the engine and keep it idling until engine oil starts to seep from the oil gallery bolt. If no engine oil comes out after one minute, turn the engine off so that it will not seize.
 b. Check the engine oil passages, the oil filter and oil pump for damage or leakage. Refer to "OIL PUMP" in chapter 5.
 c. Start the engine after solving the problem(s) and check the engine oil pressure again.
6. Install:
 • oil gallery bolt
 \[7\text{Nm}(0.7\text{m} \text{• kg, } 5.1\text{ft} \text{• lb})\]

7. Install:
 • panel
 Refer to "FOOTREST BOARD AND INNER FENDER".
REPLACING THE AIR FILTER ELEMENT

1. Remove:
 - front cover
 - side cover (left)
 Refer to "SIDE COVERS AND TAIL/ BRAKE LIGHT".

2. Remove:
 - air filter case cover
 - air filter element

3. Check:
 - air filter element
 Damage/dirty → Replace.

 NOTE:
 - Replace the air filter element every 4000km (2000mi).
 - The air filter needs more frequent service if you are riding in unusually wet or dusty areas.

4. Install:
 - air filter element
 - air filter case cover

 10Nm (1.0m • kg, 7.2ft • lb)

 CAUTION:
 Never operate the engine without the air filter element installed. Unfiltered air will cause rapid wear of engine parts and may damage the engine. Operating the engine without the air filter element will also affect the throttle body tuning, leading to poor engine performance and possible overheating.

 NOTE:
 When installing the air filter element into the air filter case cover, make sure their sealing surfaces are aligned to prevent any air leaks.
5. Install:
 - side cover (left)
 - front cover
 Refer to "SIDE COVERS AND TAIL/ BRAKE LIGHT".
CHECKING THE THROTTLE BODY JOINT AND INTAKE MANIFOLD

1. Remove:
 • front cover
 • side cover (left and right)
 • single seat/trunk
 Refer to "COVER AND PANEL".

2. Check:
 • throttle body joint 1
 • intake manifold 2
 Cracks/damage → Replace.
 Refer to "FUEL INJECTION SYSTEM" in chapter 7.

3. Install:
 • single seat/trunk
 • side cover (left and right)
 • front cover
 Refer to "COVER AND PANEL".

CHECKING THE FUEL HOSE

The following procedure applies to all of the fuel hose.

1. Remove:
 • front cover
 • side cover (left and right)
 • single seat/trunk
 • footrest board
 Refer to "COVER AND PANEL".

2. Check:
 • fuel hose 1
 Cracks/damage → Replace.
 Loose connection → Connect properly.

3. Install:
 • footrest board
 • single seat/trunk
 • side cover (left and right)
 • front cover
 Refer to "COVER AND PANEL".
CHECKING THE BREATHER HOSES

1. Remove:
 - front cover
 - side cover (left and right)
 - single seat/trunk
 Refer to "COVER AND PANEL".

2. Check:
 - breather hose ①
 - transmission case breather hose ②
 Cracks/damage → Replace.
 Loose connection → Connect properly.

CAUTION:
Make sure the breather hoses are routed correctly.

3. Install:
 - single seat/trunk
 - side cover (left and right)
 - front cover
 Refer to "COVER AND PANEL".
CHECKING THE EXHAUST SYSTEM

The following procedure applies to all of the muffler assembly and gasket.

1. Remove:
 • muffler assembly
 Refer to "ENGINE REMOVAL" in chapter 5.

2. Check:
 • muffler assembly
 Crack/damage → Replace.
 • gasket
 Exhaust gas leak → Replace.

3. Check:
 • tightening torque

 | Exhaust pipe nut ③ | 13Nm (1.3m • kg, 9.4ft • lb) |
 | Muffler and rear arm bolt ④ | 31Nm (3.1m • kg, 22.4ft • lb) |

4. Install:
 • muffler assembly
 Refer to "ENGINE REMOVAL" in chapter 5.
CHECKING THE COOLANT LEVEL

1. Stand the scooter on a level surface.

NOTE:
- Place the scooter on a suitable stand.
- Make sure the scooter is upright.

2. Check:
- Coolant level
 The coolant level should be between the maximum level mark a and minimum level mark b.
 Below the minimum level mark → Add the recommended coolant to the proper level.

CAUTION:
- Adding water instead of coolant lowers the antifreeze content of the coolant. If water is used instead of coolant check, and if necessary, correct the antifreeze concentration of the coolant.
- Use only distilled water. However, if distilled water is not available, soft water may be used.

3. Start the engine, warm it up for several minutes, and then turn it off.
4. Check:
- Coolant level

NOTE:
Before checking the coolant level, wait a few minutes until it settles.
CHECKING THE COOLING SYSTEM

1. Remove:
 - front cover
 - side cover (left and right)
 - battery / battery cover
 - single seat/trunk
 - footrest board
 Refer to "COVER AND PANEL".
 - radiator cover
 Refer to "RADIATOR" in chapter 6.

2. Check:
 - radiator
 - radiator inlet hose
 - radiator outlet hose
 Cracks/damage → Replace.
 Refer to "COOLING SYSTEM" in chapter 6.

3. Install:
 - radiator cover
 Refer to "RADIATOR" in chapter 6.
 - footrest board
 - single seat/trunk
 - battery / battery cover
 - side cover (left and right)
 - front cover
 Refer to "COVER AND PANEL".
CHANGING THE COOLANT

1. Remove:
 • front cover
 • side cover (right)
 • coolant reservoir cap cover
 Refer to "COVER AND PANEL".
 • radiator cover
 Refer to "RADIATOR" in chapter 6.

2. Disconnect:
 • coolant reservoir hose

3. Drain:
 • coolant
 (from the coolant reservoir)
 • coolant
 (from the radiator under drain bolt)

4. Remove:
 • radiator cap
 • coolant reservoir cap

WARNING

A hot radiator is under pressure. Therefore, do not remove the radiator cap when the engine is hot. Scalding hot fluid and steam may be blown out, which could cause serious injury. When the engine has cooled, open the radiator cap as follows:
Place a thick rag or a towel over the radiator cap and slowly turn the radiator cap counterclockwise towards the detent to allow any residual pressure to escape. When the hissing sound has stopped, press down on the radiator cap and turn it counterclockwise to remove.

5. Connect:
 • coolant reservoir hose

6. Install:
 • radiator under drain bolt

| 1 Nm (0.1 m • kg, 0.7 ft • lb) |
7. Fill:
 - cooling system
 (with the specified amount of the recommended coolant)

![Recommended antifreeze
High-quality ethylene glycol antifreeze containing corrosion inhibitors for aluminum engines
Mixing ratio
4:6 (antifreeze:water)
Quantity
Total amount
0.50L (0.46 Imp qt, 0.53 US qt)
Coolant reservoir capacity
0.26L (0.23 Imp qt, 0.28 US qt)
Up to the maximum level mark

NOTE:
The specified amount of coolant is a standard amount. Fill the cooling system with coolant until coolant comes out of the air bleed bolt hole.

Handling notes for coolant
Coolant is potentially harmful and should be handled with special care.

⚠️ **WARNING**
- If coolant splashes in your eyes, thoroughly wash them with water and consult a doctor.
- If coolant splashes on your clothes, quickly wash it away with water and then with soap and water.
- If coolant is swallowed, induce vomiting and get immediate medical attention.

CAUTION:
- Adding water instead of coolant lowers the antifreeze content of the coolant. If water is used instead of coolant check, and if necessary, correct the antifreeze concentration of the coolant.
- Use only distilled water. However, if distilled water is not available, soft water may be used.
- If coolant comes into contact with painted surfaces, immediately wash them with water.
- Do not mix different types of antifreeze.

8. Install:
 - radiator cap
9. Fill:
 • coolant reservoir
 (with the recommended coolant to the maximum level mark (1))
10. Install:
 • coolant reservoir cap
11. Start the engine, warm it up for several minutes, and then stop it.
12. Check:
 • coolant level
 Refer to “CHECKING THE COOLANT LEVEL”.

NOTE:
Before checking the coolant level, wait a few minutes until the coolant has settled.

13. Install:
 • radiator cover
 Refer to "RADIATOR" in chapter 6.
 • coolant reservoir cap cover
 • side cover (right)
 • front cover
 Refer to "COVER AND PANEL".
ADJUSTING THE FRONT BRAKE

1. Check:
 • brake lever free play
 Out of specification → Adjust.

 Brake lever free play (at the end of the brake lever)
 10~20mm (0.39~0.79in)

2. Adjust:
 • brake lever free play

 a. Turn the adjusting nut 1 in direction (a) or (b) until the specified brake lever free play is obtained.

 Direction (a) Brake lever free play is increased.
 Direction (b) Brake lever free play is decreased.

 CAUTION:
 After adjusting the brake lever free play, make sure there is no brake drag.

ADJUSTING THE REAR BRAKE

1. Check:
 • brake lever free play
 Out of specification → Adjust.

 Brake lever free play
 10~20mm (0.39~0.79in)

2. Adjust:
 • brake lever free play

 a. Turn the adjusting nut 1 in direction (a) or (b) until the specified brake lever free play is obtained.

 Direction (a) Brake lever free play is increased.
 Direction (b) Brake lever free play is decreased.

 CAUTION:
 After adjusting the brake lever free play, make sure there is no brake drag.
CHECKING THE FRONT AND REAR BRAKE SHOES

1. Operate the brake.
2. Check:
 • wear indicator ①
 Reaches the wear limit line ② → Replace the brake shoes as a set.
 Refer to “FRONT WHEEL AND BRAKE” and “REAR WHEEL AND BRAKE” in chapter 4.

A Front brake
B Rear brake
CHECKING AND ADJUSTING THE STEERING HEAD

1. Stand the scooter on a level surface.

WARNING

Securely support the scooter so that there is no danger of it falling over.

NOTE:

Place the scooter on a suitable stand so that the front wheel is elevated.

2. Check:
 - steering head
 Grasp the bottom of the front fork legs and gently rock the front fork.
 Binding/looseness → Adjust the steering head.

3. Remove:
 - front fork upper cover
 - front fork cover (left, right)
 - leg shield 1, 2
 Refer to "LEG SHIELD 1, 2".
 - headlight stay bracket
 Refer to "HANDLE BRACKET AND HEADLIGHT STAY BRACKET" in chapter 4.

4. Adjust:
 - steering head

 a. Loosen the steering nut ① and then tighten it to specification with the ring nut wrench.

NOTE:

Set the torque wrench at a right angle to the steering nut wrench.

Ring nut wrench
90890-01268
YU-01268
b. Loosen the upper bearing inner race\(^\circ\) completely and then tighten it to specification with a steering nut wrench\(^\bullet\).

Steering nut wrench

90890-01444
YM-A9409-7

WARNING

Do not overtighten the upper bearing inner race.

Upper bearing inner race (final tightening torque)

7Nm(0.7m • kg, 5.1ft • lb)

c. Check the steering head for looseness or binding by turning the front fork all the way in both directions. If any binding is felt, remove the lower bracket and check the bearing race.

Refer to “STEERING HEAD” in chapter 4.

d. Hold the upper bearing inner race with a steering nut wrench\(^\bullet\) and tighten the steering nut\(^\circ\) with a steering nut wrench\(^\bullet\).

Steering nut wrench

90890-01403
YU-A9472

Steering nut

30Nm(3.0m • kg, 21.7ft • lb)

5. Install:

- headlight stay bracket
 Refer to "HANDLE BRACKET AND HEADLIGHT STAY BRACKET" in chapter 4.
- leg shield1,2
- front fork cover (left, right)
- front fork upper cover
 Refer to "LEG SHIELD1,2".
CHECKING THE FRONT FORK

1. Stand the scooter on a level surface.

WARNING

Securely support the scooter so that there is no danger of it falling over.

2. Check:
 - inner tube
 Damage/scratches → Replace.
 - oil seal
 Oil leakage → Replace.

3. Hold the scooter upright and apply the front brake.

4. Check:
 - front fork operation
 Push down hard on the handlebar several times and check if the front fork rebounds smoothly.
 Rough movement → Repair.
 Refer to “FRONT FORK” in chapter 4.
CHECKING THE TIRES

The following procedure applies to both of the tires.

1. Check:
 - tire pressure
 Out of specification → Regulate.

WARNING

- The tire pressure should only be checked and regulated when the tire temperature equals the ambient air temperature.
- The tire pressure and the suspension must be adjusted according to the total weight (including cargo, rider, passenger and accessories) and the anticipated riding speed.
- Operation of an overloaded scooter could cause tire damage, an accident or an injury.
- NEVER OVERLOAD THE SCOOTER.

<table>
<thead>
<tr>
<th>Basic weight (with oil and a full fuel tank)</th>
<th>90 kg (198 lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum load*</td>
<td>175 kg (386 lb)</td>
</tr>
<tr>
<td>Cold tire pressure</td>
<td>Front</td>
</tr>
<tr>
<td>Up to 55 kg</td>
<td>175 kPa (1.75 kgf/cm², 25 psi)</td>
</tr>
<tr>
<td>55 kg ~ 175 kg</td>
<td>175 kPa (1.75 kgf/cm², 25 psi)</td>
</tr>
</tbody>
</table>

* Total weight of rider, passenger, cargo and accessories

WARNING

It is dangerous to ride with a worn-out tire. When the tire tread reaches the wear limit, replace the tire immediately.
2. Check:
 • tire surfaces
 Damage/wear → Replace the tire.

 Minimum tire tread depth
 0.8mm (0.03in)

 ① Tire tread depth
 ② Sidewall
 ③ Wear indicator

WARNING

- Do not use a tubeless tire on a wheel designed only for tube tires to avoid tire failure and personal injury from sudden deflation.
- When using tube tires, be sure to install the correct tube.
- Always replace a new tube tire and a new tube as a set.
- To avoid pinching the tube, make sure the wheel rim band and tube are centered in the wheel groove.
- Patching a punctured tube is not recommended. If it is absolutely necessary to do so, use great care and replace the tube as soon as possible with a good quality replacement.

Tire and Wheel Types

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube wheel</td>
<td>Tube tire only</td>
</tr>
<tr>
<td>Tubeless wheel</td>
<td>Tube or tubeless tire</td>
</tr>
</tbody>
</table>

After extensive tests, the tires listed below have been approved by Yamaha Motor Taiwan Co., Ltd. for this model. The front and rear tires should always be by the same manufacturer and of the same design. No guarantee concerning handling characteristics can be given if a tire combination other than one approved by Yamaha is used on this scooter.

Front Tire

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHENG SHIN</td>
<td>C6022</td>
<td>120/90-10 57J</td>
</tr>
</tbody>
</table>

Rear Tire

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHENG SHIN</td>
<td>C6022</td>
<td>120/90-10 57J</td>
</tr>
</tbody>
</table>
WARNING

New tires have a relatively low grip on the road surface until they have been slightly worn. Therefore, approximately 100 km should be traveled at normal speed before any high-speed riding is done.

NOTE:

For tires with a direction of rotation mark ①:
- Install the tire with the mark pointing in the direction of wheel rotation.
- Align the mark② with the valve installation point.
CHECKING THE WHEELS

The following procedure applies to both of the wheels.

1. Check:
 • wheel Damage/out-of-round → Replace.

WARNING
Never attempt to make any repairs to the wheel.

NOTE:
After a tire or wheel has been changed or replaced, always balance the wheel.

CHECKING AND LUBRICATING THE CABLES

The following procedure applies to all of the inner and outer cables.

WARNING
Damaged outer cable may cause the cable to corrode and interfere with its movement. Replace damaged outer cable and inner cables as soon as possible.

1. Check:
 • outer cable Damage → Replace.

2. Check:
 • cable operation Rough movement → Lubricate.

Recommended lubricant
Engine oil or a suitable cable lubricant

NOTE:
Hold the cable end upright and pour a few drops of lubricant into the cable sheath or use a suitable lubricating device.
LUBRICATING THE LEVERS AND PEDALS

Lubricate the pivoting point and metal-to-metal moving parts of the levers and pedals.

<table>
<thead>
<tr>
<th>Recommended lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium-soap-based grease</td>
</tr>
</tbody>
</table>

LUBRICATING THE CENTERSTAND

Lubricate the pivoting point and metal-to-metal moving parts of the centerstand.

<table>
<thead>
<tr>
<th>Recommended lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium-soap-based grease</td>
</tr>
</tbody>
</table>
This is a sealed type 12 volt battery. No liquid level inspection is ever needed and no refilling water will be required.

IMPORTANT:
- Never interfere with the sealed state of the battery.
- Check the charging condition with a voltmeter (Normal charging voltage should be above 12.8V)
- This battery may be installed in a vehicle only if it replaces a similar sealed type battery.

WARNING

Batteries generate explosive hydrogen gas and contain electrolyte which is made of poisonous and highly caustic sulfuric acid. Therefore, always follow these preventive measures:

- Wear protective eye gear when handling or working near batteries.
- Charge batteries in a well-ventilated area.
- Keep batteries away from fire, sparks or open flames (e.g., welding equipment, lighted cigarettes).
- DO NOT SMOKE when charging or handling batteries.
- KEEP BATTERIES AND ELECTROLYTE OUT OF REACH OF CHILDREN.
- Avoid bodily contact with electrolyte as it can cause severe burns or permanent eye injury.

FIRST AID IN CASE OF BODILY CONTACT:

EXTERNAL
- Skin — Wash with water.
- Eyes — Flush with water for 15 minutes and get immediate medical attention.

INTERNAL
- Drink large quantities of water or milk followed with milk of magnesia, beaten egg or vegetable oil. Get immediate medical attention.

CAUTION:

- This is a sealed battery. Never remove the sealing caps because the balance between cells will not be maintained and battery performance will deteriorate.
- Charging time, charging amperage and charging voltage for an MF battery are different from those of conventional batteries. The MF battery should be charged as explained in the charging method illustrations. If the battery is overcharged, the electrolyte level will drop considerably. Therefore, take special care when charging the battery.
CHECKING AND CHARGING THE BATTERY

NOTE:
Since MF batteries are sealed, it is not possible to check the charge state of the battery by measuring the specific gravity of the electrolyte. Therefore, the charge of the battery has to be checked by measuring the voltage at the battery terminals.

1. Remove:
 • battery cover
 Refer to "SIDE COVERS AND TAIL/ BRAKE LIGHT".

2. Disconnect:
 • battery leads
 (from the battery terminals)

CAUTION:
First, disconnect the negative battery lead ①, and then the positive battery lead ②.

3. Remove:
 • battery

4. Check:
 • battery charge

 a. Connect a digital circuit tester to the battery terminals.

 Digital circuit tester
 90890-03174

 Positive tester probe → positive battery terminal
 Negative tester probe → negative battery terminal

NOTE:
The charge state of an MF battery can be checked by measuring its open-circuit voltage (i.e., the voltage when the positive terminal is disconnected).

• No charging is necessary when the open-circuit voltage equals or exceeds 12.8 V.
b. Check the charge of the battery, as shown in the charts and the following example.

Example

c. Open-circuit voltage = 12.0 V
d. Charging time = 6.5 hours
e. Charge of the battery = 20 ~ 30%

5. Charge:
 * battery
 (refer to the appropriate charging method illustration)

WARNING

Do not quick charge a battery.

CAUTION:

- Never remove the MF battery sealing caps.
- Do not use a high-rate battery charger since it forces a high-amperage current into the battery quickly and can cause battery overheating and battery plate damage.
- If it is impossible to regulate the charging current on the battery charger, be careful not to overcharge the battery.
- When charging a battery, be sure to remove it from the scooter. (If charging has to be done with the battery mounted on the scooter, disconnect the negative battery lead from the battery terminal.)
- To reduce the chance of sparks, do not plug in the battery charger until the battery charger leads are connected to the battery.
- Before removing the battery charger lead clips from the battery terminals, be sure to turn off the battery charger.
Make sure the battery charger lead clips are in full contact with the battery terminal and that they are not shorted. A corroded battery charger lead clip may generate heat in the contact area and a weak clip spring may cause sparks.

- If the battery becomes hot to the touch at any time during the charging process, disconnect the battery charger and let the battery cool before reconnecting it. Hot batteries can explode!
- As shown in the following illustration, the open-circuit voltage of an MF battery stabilizes about 30 minutes after charging has been completed. Therefore, wait 30 minutes after charging is completed before measuring the open-circuit voltage.
Charging method using a variable-current (voltage) charger

Measure the open-circuit voltage prior to charging.

Connect a charger and ammeter to the battery and start charging.

Is the amperage higher than the standard charging amperage written on the battery?

Set the charging voltage to 16-17 V. (If the charging voltage is lower charging will be insufficient, if it is higher, the battery will be over-charged.)

Set the timer to the charging time determined by the open-circuit voltage. Refer to "CHECKING AND CHARGING THE BATTERY".

Adjust the charging voltage to 20 ~ 25V.

Adjust the voltage to obtain the standard charging amperage.

If the amperage does not exceed the standard charging amperage after 5 minutes, replace the battery.

If the required charging time exceeds 5 hours, it is advisable to check the charging amperage after 5 hours. If there is any change in the amperage, readjust the voltage to obtain the standard charging amperage.

Leave the battery unused for more than 30 minutes before measuring its open-circuit voltage.
12.8 V ~ Charging is complete.
12.0 ~ 12.7 V ~ Recharging is required.
Under 12.0 V ~ Replace the battery.
CHECKING AND CHARGING THE BATTERY

Charging method using a constant voltage charger

Measure the open-circuit voltage prior to charging.

Connect a charger and ammeter to the battery and start charging.

Is the amperage higher than the standard charging amperage written on the battery?

YES

Charge the battery until the charging voltage reaches 15 V.

NOTE:
Set the charging time to a maximum of 20 hours.

Leave the battery unused for more than 30 minutes before measuring its open-circuit voltage.
12.8 V ~ Charging is complete.
12.0 ~ 12.7 V ~ Recharging is required.
Under 12.0 V ~ Replace the battery.

CAUTION:
Constant amperage chargers are not suitable for charging MF batteries.

NO

This type of battery charger cannot charge an MF battery. A variable voltage charger is recommended.
6. Install:
 • battery

7. Connect:
 • battery leads
 (to the battery terminals)

 CAUTION:
 - First, connect the positive battery lead 1, and then the negative battery lead 2.
 - After installing the battery, be sure to turn the main switch from “ON” to “OFF” three times in 3 seconds intervals to initialize the idle speed control system.

8. Check:
 • battery terminals
 Dirt → Clean with a wire brush.
 Loose connection → Connect properly.

9. Lubricate:
 • battery terminals

 ![Recommended lubricant](Dielectric grease)

10. Install:
 • battery cover
 Refer to “SIDE COVERS AND TAIL/BRAKE LIGHT”.

CHECKING THE FUSE

The following procedure applies to all of the fuse.

CAUTION:

To avoid a short circuit, always set the main switch to “OFF” when checking or replacing a fuse.

1. Remove:
 • battery cover
 Refer to “SIDE COVERS AND TAIL/BRAKE LIGHT”.

3-56
2. Check:
 - fuse

 a. Connect the pocket tester to the fuse and check the continuity.

 NOTE:
 Set the pocket tester selector to “Ω × 1”.

b. If the pocket tester indicates “∞”, replace the fuse.

3. Replace:
 - blown fuse

 a. Set the main switch to “OFF”.
 b. Install a new fuse of the correct amperage rating.
 c. Set on the switches to verify if the electrical circuit is operational.
 d. If the fuse immediately blows again, check the electrical circuit.

<table>
<thead>
<tr>
<th>Fuse</th>
<th>Amperage rating</th>
<th>Q’ty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>15A</td>
<td>1</td>
</tr>
</tbody>
</table>

WARNING

Never use a fuse with an amperage rating other than that specified. Improvising or using a fuse with the wrong amperage rating may cause extensive damage to the electrical system, cause the lighting and ignition systems to malfunction and could possibly cause a fire.

CAUTION:

After removing and installing the main fuse, be sure to turn the main switch from “ON” to “OFF” three times in 3 seconds intervals to initialize the idle speed control system.

4. Install:
 - battery cover

 Refer to "SIDE COVERS AND TAIL/ BRAKE LIGHT".
REPLACING THE HEADLIGHT BULB

1. Remove:
 - headlight unit

2. Disconnect:
 - headlight lead coupler

3. Remove:
 - dust boot(1)
 - headlight bulb holder(2)
 - headlight bulb(3)

WARNING
Since the headlight bulb gets extremely hot, keep flammable products and your hands away from the bulb until it has cooled down.

4. Install:
 - headlight bulb *New*
 Secure the new headlight bulb with the headlight bulb holder.

CAUTION:
Avoid touching the glass part of the headlight bulb to keep it free from oil, otherwise the transparency of the glass, the life of the bulb and the luminous flux will be adversely affected. If the headlight bulb gets soiled, thoroughly clean it with a cloth moistened with alcohol or lacquer thinner.

5. Install:
 - headlight bulb holder

6. Install:
 - dust boot

7. Connect:
 - headlight lead coupler

8. Install:
 - headlight unit
ADJUSTING THE HEADLIGHT BEAM

1. Adjust:
 headlight beam (vertically)

 a. Turn the adjusting screw ① in direction a or b.

 Direction a: Headlight beam is raised.
 Direction b: Headlight beam is lowered.

2. Adjust:
 headlight beam (horizontally)

 a. Turn the adjusting screw ② in direction a or b.

 Direction a: Headlight beam moves to the right.
 Direction b: Headlight beam moves to the left.
CHAPTER 4
CHASSIS

FRONT WHEEL AND BRAKE .. 4-1
 FRONT WHEEL .. 4-2
 FRONT BRAKE SHOE PLATE ... 4-3
 REMOVING THE FRONT WHEEL .. 4-4
 DISASSEMBLING THE BRAKE SHOE PLATE 4-4
 CHECKING THE FRONT WHEEL ... 4-5
 CHECKING THE SPEEDOMETER GEAR UNIT 4-6
 CHECKING THE BRAKE .. 4-7
 ASSEMBLING THE BRAKE SHOE PLATE 4-8
 ASSEMBLING THE FRONT WHEEL 4-9
 INSTALLING THE FRONT WHEEL 4-10
 ADJUSTING THE FRONT WHEEL STATIC BALANCE 4-11

REAR WHEEL AND BRAKE .. 4-13
 REMOVING THE REAR WHEEL .. 4-14
 CHECKING THE REAR WHEEL .. 4-14
 CHECKING THE REAR WHEEL DRIVE HUB 4-15
 CHECKING THE BRAKE .. 4-15
 ASSEMBLING THE BRAKE SHOE PLATE 4-16
 INSTALLING THE REAR WHEEL 4-18
 ADJUSTING THE REAR WHEEL STATIC BALANCE 4-18

FRONT FORK ... 4-19
 REMOVING THE FRONT FORK LEGS 4-21
 DISASSEMBLING THE FRONT FORK LEGS 4-21
 CHECKING THE FRONT FORK LEGS 4-23
 ASSEMBLING THE FRONT FORK LEGS 4-24
 INSTALLING THE FRONT FORK LEGS 4-26

HANDLEBAR .. 4-27
 REMOVING THE HANDLEBAR ... 4-29
 CHECKING THE HANDLEBAR ... 4-29
 INSTALLING THE HANDLEBAR ... 4-30

STEERING HEAD .. 4-32
 HANDLEBAR BRACKET AND HEADLIGHT STAY BRACKET 4-32
 LOWER BRACKET ... 4-33
 REMOVING THE LOWER BRACKET 4-34
 CHECKING THE STEERING HEAD 4-35
 INSTALLING THE STEERING HEAD 4-36
REAR SHOCK ABSORBER ASSEMBLY 4-37
REMOVING THE REAR SHOCK ABSORBER ASSEMBLY 4-38
CHECKING THE REAR SHOCK ABSORBER ASSEMBLY 4-38
INSTALLING THE REAR SHOCK ABSORBER ASSEMBLY 4-39
Removing the front wheel and brake

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stop ring</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Speedometer cable</td>
<td>1</td>
<td>NOTE:</td>
</tr>
<tr>
<td>3</td>
<td>Brake adjuster</td>
<td>1</td>
<td>Place the scooter on a suitable stand so that the front wheel is elevated.</td>
</tr>
<tr>
<td>4</td>
<td>Front brake cable</td>
<td>1</td>
<td>Refer to "REMOVING THE FRONT WHEEL and INSTALLING THE FRONT WHEEL".</td>
</tr>
<tr>
<td>5</td>
<td>Adjusting pin</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
<tr>
<td>6</td>
<td>Wheel axle nut</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Wheel axle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Collar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Front brake shoe plate</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Front wheel</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Disassembling the front wheel

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Oil seal</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>②</td>
<td>Bearing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>③</td>
<td>Spacer</td>
<td>1</td>
<td>For assembly, reverse the disassembly</td>
</tr>
<tr>
<td>④</td>
<td>Bearing</td>
<td>1</td>
<td>procedure.</td>
</tr>
</tbody>
</table>

For assembly, reverse the disassembly procedure.
Disassembling the front brake shoe plate

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brake shoe kit</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Tension spring</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Camshaft lever</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Brake shoe wear indicator</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Return spring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Brake camshaft/O-ring</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Oil seal</td>
<td>1</td>
<td>Refer to "DISASSEMBLING THE BRAKE SHOE PLATE" and "ASSEMBLING THE BRAKE SHOE PLATE".</td>
</tr>
<tr>
<td>8</td>
<td>Oil seal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Circlip</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Plate washer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Speedometer clutch</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Speedometer drive gear</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Plate washer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Bushing</td>
<td>1</td>
<td>For assembly, reverse the disassembly procedure.</td>
</tr>
<tr>
<td>15</td>
<td>Oil seal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Speedometer driven gear</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Plate washer</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Torque Specifications

8Nm (0.8 m·kg, 5.8 ft·lb)
REMOVING THE FRONT WHEEL

1. Stand the scooter on a level surface.

WARNING

Securely support the scooter so that there is no danger of it falling over.

NOTE:

Place the scooter on a suitable stand so that the front wheel is elevated.

2. Remove:
 - speedometer cable
 - front brake cable
 - front wheel axle nut
 - front wheel axle
 - collar
 - front wheel
 - front brake shoe plate

DISASSEMBLING THE BRAKE SHOE PLATE

1. Remove:
 - front brake shoe kit
 - camshaft lever
 - brake shoe wear indicator
 - return spring
 - brake camshaft

2. Remove:
 - circlip
 - plate washer
 - speedometer clutch
 - speedometer drive gear
 - plate washer

3. Remove:
 - bushing
 (with the special tool)
 - speedometer driven gear
 - plate washer

NOTE:

Remove the bushing from the brake shoe plate with the meter gear bush tool.
CHECKING THE FRONT WHEEL

1. Check:
 • wheel axle
 Roll the wheel axle on a flat surface.
 Bends → Replace.

 ![Image showing a wheel axle on a flat surface]

 WARNING
 Do not attempt to straighten a bent wheel axle.

2. Check:
 • tire
 • front wheel
 Damage/wear → Replace.
 Refer to “CHECKING THE TIRES” and “CHECKING THE WHEELS” in chapter 3.

3. Measure:
 • radial wheel runout
 • lateral wheel runout
 Over the specified limits → Replace.

 ![Image showing radial and lateral wheel runout measurements]

 | Radial wheel runout limit | 1.0 mm (0.04 in) |
 | Lateral wheel runout limit | 1.0 mm (0.04 in) |

4. Check:
 • wheel bearings
 Front wheel turns roughly or is loose → Replace the wheel bearings.
 • oil seal
 Damage/wear → Replace.

5. Replace:
 • wheel bearings **New**
 • oil seal **New**
a. Clean the outside of the front wheel hub.
b. Remove the oil seal ① with a flat-head screwdriver.

NOTE:
To prevent damaging the wheel, place a rag ② between the screwdriver and the wheel surface.

c. Remove the wheel bearings ④ with a general bearing puller③.
d. Install the new wheel bearings and oil seal in the reverse order of disassembly.

CHECKING THE SPEEDOMETER GEAR UNIT

1. Check:
 - speedometer clutch
 Bends/damage/wear → Replace.

2. Check:
 - speedometer drive gear ①
 - speedometer driven gear ②
 Damage/wear → Replace.
CHECKING THE BRAKE
The following procedure applies to all of the brake shoes.

1. Check:
 • brake shoe lining
 Glazed areas → Repair.
 Sand the glazed areas with course sandpaper.

 NOTE: After sanding the glazed areas, clean the brake shoe with a cloth.

2. Measure:
 • brake shoe lining thickness a
 Out of specification → Replace.

 Brake shoe lining thickness limit (minimum)
 2.0 mm (0.08 in)

 WARNING
 Do not allow oil or grease to contact the brake shoes.

 NOTE: Replace the brake shoes as a set, if either is worn to the wear limit.

3. Measure:
 • brake drum inside diameter b
 Out of specification → Replace the wheel.

 Brake drum inside diameter limit (maximum)
 110.5 mm (4.35 in)
4. Check:
- brake drum inner surface
 Oil deposits → Clean.
 Remove the oil with a rag soaked in lacquer thinner or solvent.
- Scratches → Repair.
 Lightly and evenly polish the scratches with an emery cloth.

5. Check:
- brake camshaft
 Damage/wear → Replace.

ASSEMBLING THE BRAKE SHOE PLATE

1. Lubricate:
 - brake camshaft

<table>
<thead>
<tr>
<th>Recommended lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium-soap-based grease</td>
</tr>
</tbody>
</table>

2. Install:
 - brake camshaft ①
 - spring
 - brake shoe wear indicator ②

 a. Install the brake camshaft so its punch mark ① is positioned as shown.
 b. Align the projection ② on the brake shoe wear indicator with the notch in the brake camshaft.
 c. Check that the brake shoes are properly positioned.
3. Install:

- camshaft lever

\[8 \text{Nm}(0.8 \text{m} \cdot \text{kg}, 5.8 \text{ft} \cdot \text{lb}) \]

- Align the camshaft punch mark and camshaft lever punch mark as shown.

4. Install:

- plate washer
- speedometer driven gear
- bushing
 - (with the special tool)

Meter gear bush tool

90890-01052

ASSEMBLING THE FRONT WHEEL

1. Install:

- wheel bearing(right) New
- spacer
- wheel bearing(left) New
- oil seal New

- Install the new wheel bearings and oil seal in the reverse order of disassembly.

CAUTION:

- Do not contact the wheel bearing inner race or balls. Contact should be made only with the outer race.

NOTE:

- Use a socket that matches the diameter of the wheel bearing outer race and oil seal.

2. Install:

- brake shoe plate
 - Align the tab on the speedometer clutch with the slot in the wheel hub.
INSTALLING THE FRONT WHEEL

1. Lubricate:
 - wheel axle
 - wheel bearings
 - oil seal lips
 - speedometer drive gear
 - speedometer driven gear

 Recommended lubricant
 Lithium-soap-based grease

2. Install:
 - front wheel

 NOTE:
 Make sure the slot in the brake shoe plate fits over the stopper on the outer tube.

3. Tighten:
 - wheel axle nut

 48 Nm (4.8 m·kg, 34.7 ft·lb)

 WARNING
 Make sure the brake cable is routed properly.

 CAUTION:
 Before tightening the wheel axle nut, push down hard on the handlebar several times and check if the front fork rebounds smoothly.
ADJUSTING THE FRONT WHEEL STATIC BALANCE

NOTE:

• After replacing the tire, wheel or both, the front wheel static balance should be adjusted.
• Adjust the front wheel static balance with the brake disc installed.

1. Remove:
 • balancing weight(s)

2. Find:
 • front wheel's heavy spot

NOTE:
Place the front wheel on a suitable balancing stand.

a. Spin the front wheel.
b. When the front wheel stops, put an “X_1” mark at the bottom of the wheel.
c. Turn the front wheel 90° so that the “X_1” mark is positioned as shown.
d. Release the front wheel.
e. When the wheel stops, put an “X_2” mark at the bottom of the wheel.
f. Repeat steps (d) through (f) several times until all the marks come to rest at the same spot.
g. The spot where all the marks come to rest is the front wheel's heavy spot “X.”
3. Adjust:
 - front wheel static balance
 ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
 a. Install a balancing weight ① onto the rim exactly opposite the heavy spot “X”.

 NOTE: __
 Start with the lightest weight.

 b. Turn the front wheel 90° so that the heavy spot is positioned as shown.
 c. If the heavy spot does not stay in that position, install a heavier weight.
 d. Repeat steps (b) and (c) until the front wheel is balanced.
 ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

4. Check:
 - front wheel static balance
 ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
 a. Turn the front wheel and make sure it stays at each position shown.
 b. If the front wheel does not remain stationary at all of the positions, rebalance it.
 ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
Rear Wheel and Brake

Removing the Rear Wheel and Brake

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Muffler</td>
<td>1/1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Self lock nut/Plate washer</td>
<td>1</td>
<td>NOTE:</td>
</tr>
<tr>
<td>3</td>
<td>Brake adjuster</td>
<td>1</td>
<td>Place the scooter on a suitable stand so</td>
</tr>
<tr>
<td>4</td>
<td>Spring</td>
<td>1</td>
<td>that the front wheel is elevated.</td>
</tr>
<tr>
<td>5</td>
<td>Rear brake cable</td>
<td>1</td>
<td>Refer to "ENGINE REMOVAL" in chapter 5.</td>
</tr>
<tr>
<td>6</td>
<td>Adjusting pin</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>7</td>
<td>Rear wheel</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
<tr>
<td>8</td>
<td>Brake shoe kit</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tension spring</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Plate washer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Camshaft lever</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Indicator plate</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Brake camshaft/O-ring</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>
REAR WHEEL AND BRAKE

REMOVING THE REAR WHEEL

1. Stand the scooter on a level surface.

WARNING

Securely support the scooter so that there is no danger of it falling over.

NOTE:

Place the scooter on a suitable stand so that the rear wheel is elevated.

2. Remove:
 - muffler
 Refer to "ENGINE REMOVAL" in chapter 5.

3. Loosen:
 - brake adjuster

4. Remove:
 - wheel axle nut ①
 - plate washer
 - rear wheel ②

CHECKING THE REAR WHEEL

1. Check:
 - tire
 - rear wheel
 Damage/wear → Replace.
 Refer to "CHECKING THE TIRES" and "CHECKING THE WHEELS" in chapter 3.

2. Measure:
 - radial wheel runout
 - lateral wheel runout
 Refer to "CHECKING THE FRONT WHEEL".
CHECKING THE REAR WHEEL DRIVE HUB
1. Check:
 • rear wheel drive hub
 Cracks/damage → Replace.

CHECKING THE BRAKE
The following procedure applies to all of the brake shoes.
1. Check:
 • brake shoe lining
 Glazed areas → Repair.
 Sand the glazed areas with course sandpaper.

 NOTE: _______________________________________
 After sanding the glazed areas, clean the brake shoe with a cloth.

2. Measure:
 • brake shoe lining thickness \(a \)
 Out of specification → Replace.

 Brake shoe lining thickness limit
 (minimum)
 2.0 mm (0.08 in)

 WARNING
 Do not allow oil or grease to contact the brake shoes.

 NOTE: _______________________________________
 Replace the brake shoes as a set, if either is worn to the wear limit.
3. Measure:
 - brake drum inside diameter b
 Out of specification → Replace the wheel.

 - Brake drum inside diameter limit (maximum)
 110.5 mm (4.35 in)

4. Check:
 - brake drum inner surface
 Oil deposits → Clean.
 Remove the oil with a rag soaked in lacquer thinner or solvent.
 Scratches → Repair.
 Lightly and evenly polish the scratches with an emery cloth.

5. Check:
 - brake camshaft
 Damage/wear → Replace.

ASSEMBLING THE BRAKE SHOE PLATE

1. Install:
 - brake camshaft ①
 - o-rings New
 - brake shoe wear indicator ②

 NOTE:
 Lubricate the brake camshaft and o-rings with lithium-soap-based grease.

WARNING
After installing the brake camshaft and o-rings, remove any excess grease.

a. Install the brake camshaft ① so its punch mark ③ is positioned as shown.
b. Align the projection ⑤ on the brake shoe wear indicator with the notch in the brake shoe camshaft.
c. Check that the brake shoes are properly positioned.

2. Tighten:
 - brake camshaft bolt

 10Nm (1.0m • kg, 7.2ft • lb)
3. Install:
 - brake shoe kit
 - tension springs

CAUTION:
- Do not put lubricating oil on the brake lining.
- Change the tension spring at the same time of changing the brake shoe.
- Refer to the direction in the illustration when assembling the brake shoe and spring.
- Refer to the illustration with regards to the assembly direction of tension spring, and do not let the spring hook and coil to be damaged by the pliers.
INSTALLING THE REAR WHEEL

1. Lubricate:
 • wheel axle

 Recommended lubricant
 Lithium-soap-based grease

2. Install:
 • rear wheel

3. Tighten:
 • plate washer
 • wheel axle nut

\[120\text{Nm}(12.0\text{m} \cdot \text{kg}, 86.8\text{ft} \cdot \text{lb})\]

4. Install:
 • muffler
 Refer to "ENGINE REMOVAL" in chapter 5.

5. Adjust:
 • brake lever free play
 Refer to "ADJUSTING THE REAR BRAKE" in chapter 3.

ADJUSTING THE REAR WHEEL STATIC BALANCE

NOTE:
- After replacing the tire, wheel or both, the rear wheel static balance should be adjusted.
- Adjust the rear wheel static balance with the rear wheel drive hub installed.

1. Adjust:
 • rear wheel static balance
 Refer to "ADJUSTING THE FRONT WHEEL STATIC BALANCE"
<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cable guide</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Cap bolt</td>
<td>1</td>
<td>Refer to “LEG SHIELD1,2” in chapter 3.</td>
</tr>
<tr>
<td>3</td>
<td>O-ring</td>
<td>1</td>
<td>Refer to “FRONT WHEEL AND BRAKE”.</td>
</tr>
<tr>
<td>4</td>
<td>Lower bracket pinch bolt</td>
<td>1</td>
<td>Refer to “REMOVING THE FRONT FORK LEGS” and “INSTALLING THE FRONT FORK LEGS”</td>
</tr>
<tr>
<td>5</td>
<td>Front fork leg</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
</tbody>
</table>

Removing the front fork legs
Front fork upper cover
Reflector
Front fork cover (left and right)
Front wheel

Cable guide
Cap bolt
O-ring
Lower bracket pinch bolt
Front fork leg

45Nm (4.5m • kg, 32.5 ft • lb)
30Nm (3.0m • kg, 21.7 ft • lb)
Disassembling the front fork legs

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fork spring</td>
<td>1</td>
<td>Remove the parts in the order listed. Drain.</td>
</tr>
<tr>
<td>2</td>
<td>Damper rod bolt/Copper washer</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Damper rod</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rebound spring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inner tube</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Dust seal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Oil seal clip</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oil seal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Outer tube</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

For assembly, reverse the disassembly procedure.
REMOVING THE FRONT FORK LEGS
The following procedure applies to both of the front fork legs.

1. Stand the scooter on a level surface.

WARNING
Securely support the scooter so that there is no danger of it falling over.

NOTE:
Place the scooter on a suitable stand so that the front wheel is elevated.

2. Remove:
 - front fork upper cover
 - front fork cover (left and right)
 Refer to “LEG SHIELD 1, 2” in chapter 3.
 - front wheel
 Refer to “FRONT WHEEL AND BRAKE”.

3. Loosen:
 - lower bracket pinch bolt ①

4. Remove:
 - cap bolt ②
 (with a 10-mm hexagonal wrench ③)

WARNING
Before loosening the lower bracket pinch bolt, support the front fork leg.

5. Remove:
 - front fork leg

DISASSEMBLING THE FRONT FORK LEGS
The following procedure applies to both of the front fork legs.

1. Remove:
 - fork spring ①
2. Drain:
 - fork oil

3. Remove:
 - damper rod assembly bolt

NOTE:
While holding the damper rod with the damper rod holder and T-handle, loosen the damper rod assembly bolt.

- Damper rod holder
 90890-01294(YM-01300-1)
- T-handle
 90890-01326(YM-01326)

4. Remove:
 - damper rod
 - spring
 - inner tube

5. Remove:
 - dust seal
 - oil seal clip (with a flat-head screwdriver)

CAUTION:
Do not scratch the inner tube.
6. Remove:
• oil seal①

CAUTION:
Never reuse the oil seal.

• Rag②

EAS0066

CHECKING THE FRONT FORK LEGS
The following procedure applies to both of the front fork legs.

1. Check:
• inner tube ①
• outer tube ②
 Bends/damage/scratches → Replace.

WARNING
Do not attempt to straighten a bent inner tube as this may dangerously weaken it.

2. Measure:
• spring free length ③
 Out of specification → Replace.

Spring free length
202.2mm (7.96in)
<Limit>: 198.2mm (7.80in)

3. Check:
• damper rod ①
 Damage/wear → Replace.
 Obstruction → Blow out all of the oil passages with compressed air.
ASSEMBLING THE FRONT FORK LEGS
The following procedure applies to both of the front fork legs.

NOTE:
- When assembling the front fork leg, be sure to replace the following parts:
 - oil seal
 - dust seal
- Before assembling the front fork leg, make sure all of the components are clean.

1. Install:
 - damper rod assembly
 - rebound spring

CAUTION:
Allow the damper rod assembly to slide slowly down the inner tube until it protrudes from the bottom of the inner tube. Be careful not to damage the inner tube.

2. Lubricate:
 - inner tube's outer surface

 | Recommended lubricant |
 | Fork oil 10W or equivalent |

3. Tighten:
 - Copper washer
 - damper rod assembly bolt

\[23 \text{ Nm} (2.3 \text{ m} \cdot \text{kg}, 16.6 \text{ ft} \cdot \text{lb}) \]

NOTE:
While holding the damper rod assembly with the damper rod holder and T-handle, tighten the damper rod assembly bolt.

| Damper rod holder |
| 90890-01294(YM-01300-1) |
| T-handle |
| 90890-01326(YM-01326) |
4. Install:
- oil seal ① New (with the fork seal driver weight ② and adapter ③)

Fork seal driver weight
90890-01367(YM-A9409-7)
Adapter
90890-01400(YM-A9409-3)

CAUTION: Make sure the numbered side of the oil seal faces up.

NOTE:
- Before installing the oil seal, lubricate its lips with lithium soap base grease.
- Lubricate the outer surface of the inner tube with fork oil.
- Before installing the oil seal, cover the top of the front fork leg with a plastic bag ④ to protect the oil seal during installation.

5. Install:
- oil seal clip ①

NOTE: Adjust the oil seal clip so that it fits into the outer tube’s groove.

6. Fill:
- front fork leg (with the specified amount of the recommended fork oil)

<table>
<thead>
<tr>
<th>Quantity (each front fork leg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.042 L (0.038 Imp qt, 0.046 US qt)</td>
</tr>
</tbody>
</table>

Recommended oil
Fork oil 10W or equivalent
NOTE: ___

- While filling the front fork leg, keep it upright.
- After filling, slowly pump the front fork leg up and down to distribute the fork oil.

7. Install:
 - fork spring ①

NOTE: ___

- Install the spring with the smaller pitch facing down.

INSTALLING THE FRONT FORK LEGS

The following procedure applies to both of the front fork legs.

1. Install:
 - front fork leg
 - o-ring **New**
 - cap bolt

NOTE: ___

Pull up the inner tube until it stops, then install the cap bolt.

2. Tighten:
 - cap bolt ①

 \[45 \text{ Nm (4.5 m} \times \text{ kg, 32.5 ft} \times \text{ lb}) \]

 - lower bracket pinch bolt ②

 \[30 \text{ Nm(3.0m} \times \text{ kg, 21.7ft} \times \text{ lb}) \]
Removing the handlebar
Front fork upper cover
Front fork cover(left and right)
Leg shield1,2
1 Rear view mirror(left and right) 1/1
2 Band 2
3 Front brake cable 1
4 Brake lever(right) 1
5 Front brake switch 1
6 Front turn signal light(right) 1
7 Front turn signal light bracket(right) 1
8 Handlebar switch(right) 1
9 Throttle cable 2
10 Throttle grip assembly 1
11 Rear brake cable 1
12 Brake lever(left) 1
13 Rear brake switch 1

Order	Job/Part	Q'ty	Remarks
1 | Rear view mirror(left and right) | 1/1 | Remove the parts in the order listed.
2 | Band | 2 | Refer to "LEG SHIELD1,2" in chapter 3.
3 | Front brake cable | 1 | Disconnect.
4 | Brake lever(right) | 1 |
5 | Front brake switch | 1 |
6 | Front turn signal light(right) | 1 |
7 | Front turn signal light bracket(right) | 1 |
8 | Handlebar switch(right) | 1 |
9 | Throttle cable | 2 |
10 | Throttle grip assembly | 1 |
11 | Rear brake cable | 1 |
12 | Brake lever(left) | 1 |
13 | Rear brake switch | 1 |

4Nm(0.4m-kg, 2.9 ft-lb)
28Nm(2.8m-kg, 20.3 ft-lb)
### Order	Job/Part	Q'ty	Remarks
14 | Front turn signal light(left) | 1 |
15 | Front turn signal light bracket(left) | 1 |
16 | Handlebar switch(left) | 1 |
17 | Handlebar grip | 1 |
18 | Cap | 2 |
19 | Handlebar upper holder | 2 |
20 | Handlebar assembly | 1 | For installation, reverse the removal procedure.

Notes:
- Ensure all parts are tightened to the specified torque:
 - 4Nm (0.4m • kg, 2.9 ft • lb)
 - 28Nm (2.8m • kg, 20.3 ft • lb)
REMOVING THE HANDLEBAR

1. Stand the scooter on a level surface.

WARNING
Securely support the scooter so that there is no danger of it falling over.

2. Remove:
 - handlebar switch (right) ①
 - throttle grip assembly ②

NOTE:
While removing the handlebar holder assembly (right), pull back the rubber cover.

3. Remove:
 - handlebar switch (left)
 - handlebar grip ①
 - handlebar upper holder

NOTE:
Blow compressed air between the handlebar and the handlebar grip, and gradually push the grip off the handlebar.

CHECKING THE HANDLEBAR

1. Check:
 - handlebar ①
 - Bends/cracks/damage → Replace.

WARNING
Do not attempt to straighten a bent handlebar as this may dangerously weaken it.
INSTALLING THE HANDLEBAR

1. Stand the scooter on a level surface.

WARNING

Securely support the scooter so that there is no danger of it falling over.

2. Install:
 - handlebar
 - handlebar upper holders

 \[28\text{Nm}(2.8\text{m} \cdot \text{kg}, 20.3\text{ft} \cdot \text{lb})\]

CAUTION:

First, tighten the bolts on the front side of the handlebar holders, and then on the rear side.

NOTE:

- The upper handlebar holders should be installed with the arrow marks a facing forward A
- Align the match marks b on the handlebar with the upper surface of the handlebar lower holder.

3. Install:
 - handlebar grip

NOTE:

Before installing the handlebar grip, apply the bond.

4. Install:
 - left handlebar switch

NOTE:

Align the projection a on the left handlebar switch with the hole b on the handlebar.
5. Install:
- throttle grip assembly ①
- right handlebar switch ②
- throttle cables ③

NOTE:
- Align the projection ③ on the right handlebar switch with the hole ⑤ on the handlebar.
- Lubricate the inside of the throttle grip with a thin coat of lithium-soap-based grease and install it onto the handlebar ④.

⚠️ WARNING
Make sure the throttle grip operates smoothly.

6. Adjust:
- throttle cable free play
Refer to “ADJUSTING THE THROTTLE CABLE FREE PLAY” in chapter 3.

Throttle cable free play (at the flange of the throttle grip)
1.5~3.5mm (0.06~0.14in)
Removing the handlebar bracket and headlight stay bracket
Front fork upper cover
Front fork cover(left and right)
Leg shield1,2
Handlebar assembly
1
2
3
4
5
6
7
8
9
10
11

Remove the parts in the order listed.
Refer to"LEG SHIELD1,2"in chapter 3.
Refer to"HANDLEBAR".
Disconnect.
Disconnect.
For installation, reverse the removal procedure.
LOWER BRACKET

Removing the lower bracket

- Front fork upper cover
- Front fork cover (left and right)
- Leg shield
- Front wheel
- Front fork legs
- Handlebar assembly
- Headlight stay bracket
- Handlebar bracket

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front fender</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Ring nut</td>
<td>1</td>
<td>Refer to "LEG SHIELD1,2" in chapter 3.</td>
</tr>
<tr>
<td>3</td>
<td>Upper bearing inner race</td>
<td>1</td>
<td>Refer to "FRONT WHEEL AND BRAKE".</td>
</tr>
<tr>
<td>4</td>
<td>Upper bearing</td>
<td>1</td>
<td>Refer to "FRONT FORK"</td>
</tr>
<tr>
<td>5</td>
<td>Lower bracket</td>
<td>1</td>
<td>Refer to "HANDLEBAR".</td>
</tr>
<tr>
<td>6</td>
<td>Lower bearing</td>
<td>1</td>
<td>Refer to "HANDLEBAR BRACKET AND HEADLIGHT STAY BRACKET"</td>
</tr>
<tr>
<td>7</td>
<td>Upper bearing outer race</td>
<td>1</td>
<td>Refer to "REMOVING THE LOWER BRACKET" and "INSTALLING THE STEERING HEAD".</td>
</tr>
<tr>
<td>8</td>
<td>Lower bearing outer race</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
<tr>
<td>9</td>
<td>Lower bearing inner race</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Torque Specifications:
- **7Nm (0.7m • kg, 5.1 ft • lb)**
- **30Nm (3.0m • kg, 21.7 ft • lb)**

For installation, reverse the removal procedure.
REMOVING THE LOWER BRACKET

1. Stand the scooter on a level surface.

WARNING

Securely support the scooter so that there is no danger of it falling over.

2. Remove:
 - handlebar bracket

NOTE:
Remove the handlebar bracket by loosening the ring nut gradually.

3. Remove:
 - ring nut
 (with the ring nut wrench)

4. Remove:
 - upper bearing inner race
 (with the steering nut wrench)

WARNING

Securely support the lower bracket so that there is no danger of it falling.
CHECKING THE STEERING HEAD

1. Wash:
 - bearing balls
 - bearing races

Recommended cleaning solvent
Kerosene

2. Check:
 - bearing balls ①
 - bearing races ②
 Damage/pitting → Replace.

3. Replace:
 - bearing balls
 - bearing races

 a. Remove the bearing races from the steering head pipe with a long rod ① and hammer.
 b. Remove the bearing race from the front fork assembly with a floor chisel ② and hammer.
 c. Install a new bearing races.

CAUTION:
If the bearing race is not installed properly, the steering head pipe could be damaged.

NOTE:
Always replace the balls and bearing races as a set.

4. Check:
 - lower bracket (along with the steering stem)
 Bends/cracks/damage → Replace.
INSTALLING THE STEERING HEAD

1. Lubricate:
 - bearing balls
 - bearing races

 Recommended lubricant
 Lithium-soap-based grease

2. Install:
 - lower bracket
 - upper bearing inner race (with the steering nut wrench)

 Upper bearing inner race
 7Nm (0.7m • kg, 5.1ft • lb)

 Steering nut wrench
 90890-01444
 YM-A9409-7

3. Install:
 - ring nut (with the steering nut wrench)

 Ring nut
 30Nm (3.0m • kg, 21.7ft • lb)

 Steering nut wrench
 90890-01403
 YU-A9472

4. Install:
 - handlebar bracket

 NOTE:
 Align the handlebar bracket across rod on the lower bracket concave.

5. Tighten:
 - handlebar bracket nut

 60Nm (6.0m • kg, 43.4ft • lb)
Removing the rear shock absorber assembly

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front cover</td>
<td>1</td>
<td>Remove the parts in the order listed. Refer to "SIDE COVERS AND TAIL/ BRAKE LIGHT" in chapter 3.</td>
</tr>
<tr>
<td>2</td>
<td>Side cover(left)</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
<tr>
<td>3</td>
<td>Rear shock absorber assembly upper nut</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear shock absorber assembly upper bolt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rear shock absorber assembly lower bolt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rear shock absorber assembly</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
REAR SHOCK ABSORBER ASSEMBLY

REMOVING THE REAR SHOCK ABSORBER ASSEMBLY

1. Stand the scooter on a level surface.

WARNING

Securely support the scooter so that there is no danger of it falling over.

NOTE:

Place the scooter on a suitable stand so that the rear wheel is elevated.

2. Remove:
 - front cover
 - side cover (left)
 Refer to "SIDE COVERS AND TAIL/BRAKE LIGHT" in chapter 3.

3. Remove:
 - rear shock absorber nut (upper)
 - rear shock absorber bolt (upper)
 - rear shock absorber bolt (lower)

CHECKING THE REAR SHOCK ABSORBER ASSEMBLY

1. Check:
 - rear shock absorber rod
 Bend/damage → Replace the rear shock absorber assembly.
 - rear shock absorber
 Oil leak → Replace the rear shock absorber assembly.
 - spring
 Damage/wear → Replace the rear shock absorber assembly.
 - bushing
 Damage/wear → Replace.
 - dust seal
 Damage/wear → Replace.
 - bolts
 Bends/damage/wear → Replace.
INSTALLING THE REAR SHOCK ABSORBER ASSEMBLY

1. Install:
 • rear shock absorber assembly

2. Tighten:
 • rear shock absorber assembly upper nut
 \[30 \text{Nm} (3.0 \text{m} \cdot \text{kg}, 21.7 \text{ft} \cdot \text{lb})\]
 • rear shock absorber assembly lower bolt
 \[16 \text{Nm} (1.6 \text{m} \cdot \text{kg}, 11.6 \text{ft} \cdot \text{lb})\]

3. Install:
 • side cover (left)
 • front cover
 Refer to "SIDE COVERS AND TAIL/ BRAKE LIGHT" in chapter 3.
CHAPTER 5
ENGINE

ENGINE REMOVAL .. 5-1
LEADS, HOSES AND MUFFLER ... 5-1
ENGINE .. 5-3
INSTALLING THE ENGINE ... 5-4
CYLINDER HEAD .. 5-5
REMOVING THE CYLINDER HEAD .. 5-7
CHECKING THE CYLINDER HEAD .. 5-9
INSTALLING THE CYLINDER HEAD .. 5-10
THE ROCKER ARMS AND CAMSHAFT .. 5-13
REMOVING THE ROCKER ARMS AND CAMSHAFT 5-14
CHECKING THE CAMSHAFT ... 5-15
CHECKING THE ROCKER ARMS AND ROCKER ARM
SHAFTS .. 5-16
CHECKING THE TIMING CHAIN, CAMSHAFT SPROCKET, AND
TIMING CHAIN GUIDES ... 5-17
CHECKING THE TIMING CHAIN TENSIONER ... 5-18
INSTALLING THE CAMSHAFT AND ROCKER ARMS 5-19
VALVES AND VALVE SPRINGS .. 5-20
REMOVING THE VALVES .. 5-22
CHECKING THE VALVES AND VALVE GUIDES 5-24
CHECKING THE VALVE SEATS ... 5-26
CHECKING THE VALVE SPRINGS ... 5-28
INSTALLING THE VALVES ... 5-29
CYLINDER AND PISTON ... 5-31
REMOVING THE CYLINDER AND PISTON ... 5-32
CHECKING THE CYLINDER AND PISTON .. 5-33
CHECKING THE PISTON RINGS ... 5-35
CHECKING THE PISTON PIN ... 5-36
CHECKING THE TIMING CHAIN GUIDE .. 5-37
INSTALLING THE PISTON AND CYLINDER .. 5-37
BELT DRIVE ... 5-39
V-BELT CASE COVER .. 5-39
KICKSTARTER ... 5-40
INSTALLING THE KICKSTARTER ... 5-41
V-BELT AND PRIMARY/SECONDARY SHEAVE 5-42
SECONDARY SHEAVE .. 5-43
REMOVING THE PRIMARY SHEAVE .. 5-44
REMOVING THE SECONDARY SHEAVE AND V-BELT 5-44
DISASSEMBLING THE SECONDARY SHEAVE 5-45
CHECKING THE CLUTCH SHOES 5-45
CHECKING THE V-BELT ... 5-46
CHECKING THE PRIMARY SHEAVE 5-46
CHECKING THE PRIMARY SHEAVE WEIGHTS 5-47
CHECKING THE SLIDER .. 5-47
CHECKING THE SECONDARY SHEAVE 5-47
ASSEMBLING THE PRIMARY SHEAVE 5-48
ASSEMBLING THE SECONDARY SHEAVE 5-49
INSTALLING THE SECONDARY SHEAVE, V-BELT AND PRIMARY SHEAVE .. 5-50

STARTER CLUTCH AND AC MAGNETO 5-53
STATOR COIL ASSEMBLY ... 5-53
STARTER CLUTCH ... 5-55
REMOVING THE AC MAGNETO 5-56
REMOVING THE STARTER CLUTCH 5-57
CHECKING THE STARTER CLUTCH 5-58
INSTALLING THE STARTER CLUTCH 5-59
INSTALLING THE AC MAGNETO 5-59

OIL PUMP ... 5-61
CHECKING THE OIL PUMP ... 5-62
ASSEMBLING THE OIL PUMP 5-63
INSTALLING THE OIL PUMP ... 5-63

TRANSMISSION .. 5-64
CHECKING THE TRANSMISSION 5-65

CRANKSHAFT .. 5-66
CRANKSHAFT ASSEMBLY ... 5-66
DISASSEMBLING THE CRANKCASE 5-68
REMOVING THE CRANKSHAFT ASSEMBLY 5-69
CHECKING THE CRANKSHAFT AND CONNECTING ROD 5-69
CHECKING THE CRANKCASE ... 5-70
CHECKING THE TIMING CHAIN AND TIMING CHAIN GUIDE(INTAKE SIDE) ... 5-71
CHECKING THE BEARINGS AND OIL SEALS 5-71
CHECKING THE CIRCLIPS AND WASHERS 5-71
INSTALLING THE CRANKSHAFT 5-72
ASSEMBLING THE CRANKCASE 5-72
ENGINE REMOVAL

LEADS, HOSES AND MUFFLER

Engine Removal

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Removing the leads, hoses and muffler</td>
<td></td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td></td>
<td>Front cover/Single seat/Trunk</td>
<td></td>
<td>Refer to "COVER AND PANEL" in chapter 3.</td>
</tr>
<tr>
<td></td>
<td>Battery cover/Battery</td>
<td></td>
<td>Drain.</td>
</tr>
</tbody>
</table>
| | Side cover (left and right) | | Refer to "CHANGING THE COOLANT" in chapter 3.
| | Footrest board | | Refer to "REAR WHEEL AND BRAKE" in chapter 4.
| | Coolant | | Refer to "THROTTLE BODY AND FUEL INJECTOR" in chapter 7.
| | Rear brake cable/Adjuster/Adjuster/Adjuster/Adjuster | | Refer to "STARTER MOTOR" in chapter 8. |
| | Throttle body and fuel injector | | Disconnect. |
| | Starter motor | | Disconnect. |
| 1 | Conduit hose | | |
| 2 | Coolant temperature sensor coupler | 1 | |

Engine Diagram: Diagram showing the various components involved in engine removal, including specific torque values for different parts. The diagram illustrates the connectivity and positioning of leads, hoses, and mufflers in relation to the engine.
ENGINE REMOVAL

1. Crankshaft position sensor/Stator assembly coupler
- **Order**: 3
- **Q'ty**: 1/1
- **Remarks**: Disconnect.

2. Ignition primary coil coupler
- **Order**: 4
- **Q'ty**: 1
- **Remarks**: Disconnect.

3. Air filter assembly/Breather hose
- **Order**: 5
- **Q'ty**: 1/1

4. Bracket
- **Order**: 6
- **Q'ty**: 1

5. Muffler
- **Order**: 7
- **Q'ty**: 1

6. Gasket
- **Order**: 8
- **Q'ty**: 1
- **Remarks**: For installation, reverse the removal procedure.
Removing the engine

1. Rear shock absorber assembly lower bolt
2. Engine mounting nut
3. Engine mounting bolt
4. Engine
5. Rear fender

Remove the parts in the order listed.

NOTE:
- Place a suitable stand under the frame and engine.
- Refer to "INSTALLING THE ENGINE".
- For installation, reverse the removal procedure.
INSTALLING THE ENGINE

1. Install:
 - engine
 - engine mounting bolt
 - engine mounting nut

 NOTE:
 - Apply lithium-soap-based grease to the unthreaded portion of the engine mounting bolt shaft.
 - Do not fully tighten the engine mounting bolt.

2. Install:
 - rear shock absorber assembly lower bolt

 NOTE:
 Do not fully tighten the bolt.

3. Tighten:
 - engine mounting bolt

 \[58 \text{Nm} (5.8 \text{m} \cdot \text{kg}, 42.0 \text{ft} \cdot \text{lb}) \]
 - rear shock absorber assembly lower bolt

 \[16 \text{Nm} (1.6 \text{m} \cdot \text{kg}, 11.6 \text{ft} \cdot \text{lb}) \]
Cylinder Head

Table of Parts and Torque Specifications

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radiator</td>
<td>1/1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Thermostat</td>
<td>1/1</td>
<td>Refer to "COOLING SYSTEM" in chapter 6.</td>
</tr>
<tr>
<td>3</td>
<td>Water pump</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Muffler/Bracket</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Intake manifold/O-ring</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Joint/O-ring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Spark plug cap</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Ignition coil</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Spark plug</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Coolant temperature sensor</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cylinder head cover</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>O-ring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Timing chain tensioner</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- **Removing the Cylinder Head**
- Remove the parts in the order listed.
- Refer to "COOLING SYSTEM" in chapter 6.
- Refer to "ENGINE REMOVAL".
<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Timing chain tensioner gasket</td>
<td>1</td>
<td>Refer to "REMOVING THE CYLINDER HEAD" and "INSTALLING THE CYLINDER HEAD".</td>
</tr>
<tr>
<td>11</td>
<td>Camshaft sprocket</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Bolt</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nut</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Plate</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Cylinder head</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Cylinder head gasket</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Dowel pin</td>
<td>2</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
</tbody>
</table>

Order of assembly:

10. Timing chain tensioner gasket
11. Camshaft sprocket
12. Bolt
13. Nut
14. Plate
15. Cylinder head
16. Cylinder head gasket
17. Dowel pin
REMOVING THE CYLINDER HEAD

1. Remove:
 - V-belt case cover
 - Refer to "BELT DRIVE"
 - Cylinder head cover

2. Align:
 - "I" mark a on the AC magneto rotor
 (with the stationary pointer b on the crankcase cover)

 a. Turn the primary fixed sheave counterclockwise.
 b. When the piston is at TDC on the compression stroke, align the "I" mark c on the camshaft sprocket with the mark d on the plate.

3. Loosen:
 - Timing chain tensioner cap bolt
 - Camshaft sprocket bolt ①
 While holding the crank bolt with a wrench ②, remove the camshaft sprocket bolt.

Rotor holding tool
90890-01235
YU-01235
4. Remove:
 - timing chain tensioner
 (along with the gasket)
 - camshaft sprocket ①
 - timing chain ②

 NOTE:
 - To prevent the timing chain from falling into the crankcase, fasten it with a wire.

5. Remove:
 - cylinder head

 NOTE:
 - Loosen the nuts in the proper sequence as shown.
 - Loosen each nut 1/2 of a turn at a time. After all of the nuts are fully loosened, remove them.
CHECKING THE CYLINDER HEAD

1. Eliminate:
 - combustion chamber carbon deposits
 (with a rounded scraper)

NOTE: Do not use a sharp instrument to avoid damaging or scratching:
 - spark plug bore thread
 - valve seats

2. Check:
 - cylinder head
 Damage/scratches → Replace.

3. Measure:
 - cylinder head warpage
 Out of specification → Resurface the cylinder head.

 Maximum cylinder head warpage 0.05 mm (0.0020 in)

a. Place a straightedge ① and a thickness gauge ② across the cylinder head.
b. Measure the warpage.
c. If the limit is exceeded, resurface the cylinder head as follows.
d. Place a 400 ~ 600 grit wet sandpaper on the surface plate and resurface the cylinder head using a figure-eight sanding pattern.

NOTE: To ensure an even surface, rotate the cylinder head several times.
INSTALLING THE CYLINDER HEAD

1. Install:
 • gasket [New]
 • dowel pins

2. Install:
 • cylinder head

3. Tighten:
 • cylinder head nuts
 \[10 \text{ Nm (1.0 m} \cdot \text{kg, 7.2 ft} \cdot \text{lb) \]}
 • cylinder head bolts
 \[10 \text{ Nm (1.0 m} \cdot \text{kg, 7.2 ft} \cdot \text{lb) \]}

NOTE:
- Lubricate the cylinder head nuts with engine oil.
- Tighten the cylinder head nuts in the proper tightening sequence as shown and torque them in two stages
 • cylinder head tightening sequence (1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 6)

4. Install:
 • camshaft sprocket
 • timing chain

a. Turn the primary pulley counterclockwise.
b. Align the “I” mark \(\text{a}\) on the AC magneto rotor with the stationary pointer \(\text{b}\) on the crankcase cover.
c. Align the “I” mark \(\text{c}\) on the camshaft sprocket with the stationary pointer \(\text{d}\) on the plate.
d. Install the timing chain onto the camshaft sprocket, and then install the camshaft sprocket onto the camshaft.

NOTE:
- When installing the camshaft sprocket, be sure to keep the timing chain as tight as possible on the exhaust side.
- Align the slot on the camshaft with the tab in the camshaft sprocket.
CAUTION: Do not turn the crankshaft when installing the camshaft to avoid damage or improper valve timing.

e. While holding the camshaft, temporarily tighten the camshaft sprocket bolt.
f. Remove the wire from the timing chain.

5. Install
 - camshaft sprocket bolt

6. Install:
 - timing chain tensioner gasket
 - timing chain tensioner

 a. Remove the cap bolt and spring.
 b. Release the timing chain tensioner one-way cam and push the timing chain tensioner rod all the way into the timing chain tensioner housing.
 c. Install the timing chain tensioner and gasket onto the cylinder.

 Timing chain tensioner bolt 9 Nm (0.9 m•kg, 6.5 ft•lb)

 d. Install the springs and cap bolt.

 Cap bolt 8 Nm (0.8 m•kg, 5.8 ft•lb)
7. Turn:
 - crankshaft
 (several turns counterclockwise)

8. Check:
 - "I" mark @
 Align the "I" mark on the AC magneto rotor with the stationary pointer b on the crankcase cover.
 - "I" mark c
 Align the "I" mark on the camshaft sprocket with the stationary pointer d on the plate.
 Out of alignment → Correct.
 Refer to the installation steps above.

9. Tighten:
 - camshaft sprocket bolt

 $\times 30 \text{ Nm (3.0 m} \cdot \text{kg, 21.7 ft} \cdot \text{lb)}$

CAUTION:

Be sure to tighten the camshaft sprocket bolt to the specified torque to avoid the possibility of the bolts coming loose and damaging the engine.

10. Measure:
 - valve clearance
 Out of specification → Adjust.
 Refer to "ADJUSTING THE VALVE CLEARANCE" in chapter 3.
Removing the rocker arms and camshaft

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cylinder head</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Camshaft</td>
<td>1</td>
<td>Refer to “CYLINDER HEAD”.</td>
</tr>
<tr>
<td>3</td>
<td>Rocker arm shaft(intake)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rocker arm shaft(exhaust)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rocker arm(intake)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rocker arm(exhaust)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collar</td>
<td>2</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
</tbody>
</table>
REMVOING THE ROCKER ARMS AND CAMSHAFT

1. Remove:
 - intake rocker arm shaft
 - exhaust rocker arm shaft
 - intake rocker arm
 - exhaust rocker arm
 - collar

NOTE:
Remove the rocker arm shafts with the clip plier.

2. Remove:
 - camshaft ①

NOTE:
Remove the camshaft with the slide hammer bolt.

<table>
<thead>
<tr>
<th>Slide hammer bolt</th>
<th>90890-01085</th>
<th>YU-01083-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>90890-01084</td>
<td>YU-01083-3</td>
</tr>
</tbody>
</table>
CHECKING THE CAMSHAFT

1. Check:
 • camshaft bushings
 Damage/wear → Replace.

2. Check:
 • camshaft lobes
 Blue discoloration/pitting/scratches → Replace the camshaft.

3. Measure:
 • camshaft lobe dimensions a and b
 Out of specification → Replace the camshaft.

Camshaft lobe dimension limit
Intake
 a\(30.158 - 30.258\) mm
 (1.1873 - 1.1913 in)
 <Limit>: 30.058 mm (1.1834 in)
 b\(25.082 - 25.182\) mm
 (0.9875 - 0.9914 in)
 <Limit>: 24.982 mm (0.9835 in)

Exhaust
 a\(30.158 - 30.258\) mm
 (1.1873 - 1.1913 in)
 <Limit>: 30.058 mm (1.1834 in)
 b\(25.020 - 25.120\) mm
 (0.9850 - 0.9890 in)
 <Limit>: 24.920 mm (0.9811 in)

4. Check:
 • camshaft oil passage
 Obstruction → Blow out with compressed air.
CHECKING THE ROCKER ARMS AND ROCKER ARM SHAFTS
The following procedure applies to all of the rocker arms and rocker arm shafts.

1. Check:
 • rocker arm (camshaft touch surface)
 • rocker arm (valve touch surface)
 Damage/wear → Replace.

2. Check:
 • rocker arm shaft
 Blue discoloration/excessive wear/pitting/scratches → Replace or check the lubrication system.

3. Check:
 • camshaft lobe
 Excessive wear → Replace the camshaft.

4. Measure:
 • rocker arm inside diameter
 Out of specification → Replace.

Rocker arm inside diameter
10 ~ 10.015 mm (0.3937 ~ 0.3943 in)
<Limit>: 10.030 mm (0.3949 in)
5. Measure:
- rocker arm shaft outside diameter \(a \)

Out of specification → Replace.

<table>
<thead>
<tr>
<th>Rocker arm shaft outside diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.981 ~ 9.991 mm (0.3930 ~ 0.3933 in)</td>
</tr>
<tr>
<td><Limit>: 9.950 mm (0.3917 in)</td>
</tr>
</tbody>
</table>

6. Calculate:
- rocker-arm-to-rocker-arm-shaft clearance

NOTE:
Calculate the clearance by subtracting the rocker arm shaft outside diameter from the rocker arm inside diameter.

Above 0.034 mm (0.0013 in) → Replace the defective part(s).

<table>
<thead>
<tr>
<th>Rocker-arm-to-rocker-arm-shaft clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.009 ~ 0.034 mm (0.0004 ~ 0.0013 in)</td>
</tr>
</tbody>
</table>

CHECKING THE TIMING CHAIN, CAMSHAFT SPROCKET, AND TIMING CHAIN GUIDES

1. Check:
- timing chain
 Damage/stiffness → Replace the timing chain and camshaft sprocket as a set.

2. Check:
- camshaft sprocket
 More than 1/4 tooth wear \(a \) → Replace the camshaft sprocket and the timing chain as a set.

 \(a \) 1/4 tooth

 \(b \) Correct

 ① Timing chain roller
 ② Camshaft sprocket

3. Check:
- timing chain guide (exhaust side)
- timing chain guide (intake side)

Damage/wear → Replace the defective part(s).
CHECKING THE TIMING CHAIN TENSIONER

1. Check:
 • timing chain tensioner
 Cracks/damage → Replace.

2. Check:
 • one-way cam operation
 Rough movement → Replace the timing chain tensioner.

3. Check:
 • cap bolt
 • o-ring New
 • spring
 • one-way cam
 • gasket New
 • timing chain tensioner rod
 Damage/wear → Replace the defective part(s).

Removing the spring and cap bolt.
Return cam chain tensioner one way cam.
Press tensioner rod to the cam chain tensioner housing.

Installing the spring and cap bolt.
Loosen the front end of cam chain tensioner slowly.
Make sure to return to the front end of cam chain tensioner.

Rough movement → Replace the timing chain tensioner.
INSTALLING THE CAMSHAFT AND ROCKER ARMS

1. Lubricate:
 - camshaft ①
 - Recommended lubricant
 Camshaft: Molybdenum disulfide oil
 Camshaft bearing: Engine oil

2. Lubricate:
 - rocker arm shafts
 - Recommended lubricant
 Molybdenum disulfide oil

3. Install:
 - exhaust rocker arm ①
 - collar ②
 - exhaust rocker arm shaft ③
 NOTE: Make sure the exhaust rocker arm shaft is completely pushed into the cylinder head.

4. Install:
 - intake rocker arm ①
 - collar ②
 - intake rocker arm shaft ③
 NOTE: Make sure the intake rocker arm shaft is completely pushed into the cylinder head.
Removing the valves and valve springs

- Cylinder head
- Rocker arms
- Rocker arm shafts
- Camshaft

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valve pad</td>
<td>3</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Valve cotter</td>
<td>6</td>
<td>Refer to "CYLINDER HEAD".</td>
</tr>
<tr>
<td>3</td>
<td>Valve spring retainer</td>
<td>3</td>
<td>Refer to "REMOVING THE ROCKER ARMS AND CAMSHAFT" and "INSTALLING THE CAMSHAFT AND ROCKER ARMS".</td>
</tr>
<tr>
<td>4</td>
<td>Valve spring</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Valve(intake)</td>
<td>2</td>
<td>Refer to "REMOVING THE VALVES" and "INSTALLING THE VALVES".</td>
</tr>
<tr>
<td>6</td>
<td>Valve(exhaust)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Valve stem seal</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Valve stem seat</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Valve guide</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
For installation, reverse the removal procedure.
REMOVING THE VALVES
The following procedure applies to all of the valves and related components.

NOTE: ____________
Before removing the internal parts of the cylinder head (e.g., valves, valve springs, valve seats), make sure the valves properly seal.

1. Remove:
 • valve pad

NOTE: ____________
Make a note of the position of each valve pad so that they can be reinstalled in their original place.

2. Check:
 • valve sealing
 Leakage at the valve seat → Check the valve face, valve seat, and valve seat width.
 Refer to “CHECKING THE VALVE SEATS”.

 a. Pour a clean solvent into the intake and exhaust ports.
 b. Check that the valves properly seal.

NOTE: ____________
There should be no leakage at the valve seat.

3. Remove:
 • valve cotters

NOTE: ____________
Remove the valve cotters by compressing the valve spring with the valve spring compressor and the valve spring compressor attachment.
4. Remove:
- valve spring retainer ①
- valve spring ②
- valve stem seal ③
- valve spring seat ④
- valve ⑤

NOTE: Identify the position of each part very carefully so that it can be reinstalled in its original place.
CHECKING THE VALVES AND VALVE GUIDES

The following procedure applies to all of the valves and valve guides.

1. Measure:
 • valve-stem-to-valve-guide clearance

 \[
 \text{Valve-stem-to-valve-guide clearance} = \text{Valve guide inside diameter} - \text{Valve stem diameter}\n \]

 Out of specification → Replace the valve guide.

 Intake
 - 0.010 ~ 0.037 mm (0.0004 ~ 0.0015 in)
 - **<Limit>:** 0.08 mm (0.0031 in)

 Exhaust
 - 0.025 ~ 0.052 mm (0.001 ~ 0.002 in)
 - **<Limit>:** 0.10 mm (0.0039 in)

2. Replace:
 • valve guide

NOTE:
To ease valve guide removal and installation, and to maintain the correct fit, heat the cylinder head to 100°C (212°F) in an oven.

\[\text{Valve guide remover (4.0 mm)} \quad 90890-04111(\text{YM-04111})\]
\[\text{Valve guide installer (4.0 mm)} \quad 90890-04112(\text{YM-04112})\]
\[\text{Valve guide reamer (4.0 mm)} \quad 90890-04113(\text{YM-04113})\]
3. Eliminate:
 • carbon deposits
 (from the valve face and valve seat)

4. Check:
 • valve face
 Pitting/wear → Grind the valve face.
 • valve stem end
 Mushroom shape or diameter larger than the body of the valve stem → Replace the valve.

5. Measure:
 • valve margin thickness \(a \)
 Out of specification → Replace the valve.

 Valve margin thickness
 0.9~1.1mm (0.0354~0.0433in)

6. Measure:
 • valve stem runout
 Out of specification → Replace the valve.

 Valve stem runout
 0.01 mm (0.0004 in)

NOTE:
• If the valve is removed or replaced, always replace the oil seal.
CHECKING THE VALVE SEATS

The following procedure applies to all of the valves and valve seats.

1. Eliminate:
 • carbon deposits
 (from the valve face and valve seat)

2. Check:
 • valve seat
 Pitting/wear → Replace the cylinder head.

3. Measure:
 • valve seat width \(a \)
 Out of specification → Replace the cylinder head.

\[
\text{Intake: } 0.9 \sim 1.1 \text{ mm (0.0354 \sim 0.0433 in)} \\
\text{Exhaust: } 0.9 \sim 1.1 \text{ mm (0.0354 \sim 0.0433 in)} \\
\text{<Limit>: } 1.6 \text{ mm (0.063 in)}
\]

\[\text{Valve seat width} \]

NOTE:
Where the valve seat and valve face contacted one another, the blueing will have been removed.

4. Lap:
 • valve face
 • valve seat

NOTE:
After replacing the cylinder head or replacing the valve and valve guide, the valve seat and valve face should be lapped.
a. Apply a coarse lapping compound (a) to the valve face.

CAUTION:
Do not let the lapping compound enter the gap between the valve stem and the valve guide.

b. Apply molybdenum disulfide oil onto the valve stem.
c. Install the valve into the cylinder head.
d. Turn the valve until the valve face and valve seat are evenly polished, then clean off all of the lapping compound.

NOTE:
For the best lapping results, lightly tap the valve seat while rotating the valve back and forth between your hands.

e. Apply a fine lapping compound to the valve face and repeat the above steps.
f. After every lapping procedure, be sure to clean off all of the lapping compound from the valve face and valve seat.
g. Apply Mechanic's blueing dye (Dytem) (b) onto the valve face.
h. Install the valve into the cylinder head.
i. Press the valve through the valve guide and onto the valve seat to make a clear impression.
j. Measure the valve seat width again. If the valve seat width is out of specification, reface and lap the valve seat.
CHECKING THE VALVE SPRINGS
The following procedure applies to all of the valve springs.

1. Measure:
 • valve spring free length ①
 Out of specification → Replace the valve spring.

 Valves free length
 Intake valve spring
 39.35 mm (1.5492 in)
 <Limit>: 37.38 mm (1.4717 in)
 Exhaust valve spring
 41.57 mm (1.6366 in)
 <Limit>: 39.49 mm (1.5547 in)

2. Measure:
 • compressed valve spring force ②
 Out of specification → Replace the valve spring.

 Compressed valve spring force (installed)
 Intake valve spring
 91.1~104.9 N (9.3~10.7 kg, 20.48~23.58 lb) at 28 mm (1.1024 in)
 Exhaust valve spring
 107.9~124.1 N (11.0~12.7 kg, 24.26~27.90 lb) at 30 mm (1.1811 in)

3. Measure:
 • valve spring tilt ③
 Out of specification → Replace the valve spring.

 Spring tilt limit
 Intake valve spring
 1.7 mm (0.0669 in) (2.5°)
 Exhaust valve spring
 1.8 mm (0.0709 in) (2.5°)
Installing the Valves

The following procedure applies to all of the valves and related components.

1. Deburr:
 - Valve stem end
 (with an oil stone)

2. Lubricate:
 - Valve stem 1
 - Valve stem seal 2
 (with the recommended lubricant)

 Recommended lubricant
 Molybdenum disulfide oil

3. Install:
 - Valve 1
 - Valve spring seat 2
 - Valve stem seal 3
 New
 - Valve spring 4
 - Valve spring retainer 5
 (into the cylinder head)

 NOTE:
 Install the valve spring with the larger pitch 5 facing up.

4. Install:
 - Valve cotters 1

 NOTE:
 Install the valve cotters by compressing the valve spring with the valve spring compressor and the valve spring compressor attachment 2.
5. To secure the valve cotters onto the valve stem, lightly tap the valve tip with a soft-face hammer.

CAUTION:

Hitting the valve tip with excessive force could damage the valve.

6. Install:

 valve pad ①

NOTE:

- Lubricate the valve pad with engine oil.
- Valve pad must be reinstalled in its original position.
<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Removing the cylinder and piston</td>
<td></td>
<td>Remove the parts in the order listed. Refer to "CYLINDER HEAD".</td>
</tr>
<tr>
<td>1</td>
<td>Cylinder head</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Timing chain guide(exhaust side)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cylinder</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dowel pin</td>
<td>2</td>
<td>Refer to "REMOVING THE CYLINDER AND PISTON" and "INSTALLING THE PISTON AND CYLINDER".</td>
</tr>
<tr>
<td>4</td>
<td>Cylinder gasket</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Piston pin clip</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Piston pin</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Piston</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Piston ring set</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
</tbody>
</table>

REMOVING THE CYLINDER AND PISTON

1. Remove:
 - piston pin clip ①
 - piston pin ②
 - piston ③

CAUTION: ________________________________
Do not use a hammer to drive the piston pin out.

NOTE: ________________________________
- Before removing the piston pin clip, cover the crankcase opening with a clean rag to prevent the piston pin clip from falling into the crankcase.
- Before removing the piston pin, deburr the piston pin clip's groove and the piston's pin bore area. If both areas are deburred and the piston pin is still difficult to remove, remove it with the piston pin puller set④.

Piston pin puller set
90890-01304(YU-01304)

2. Remove:
 - top ring
 - 2nd ring
 - oil ring

NOTE: ________________________________
When removing a piston ring, open the end gap with your fingers and lift the other side of the ring over the piston crown.
CHECKING THE CYLINDER AND PISTON

1. Check:
 • piston wall
 • cylinder wall
 Vertical scratches → Rebore or replace the cylinder, and replace the piston and piston rings as a set.

2. Measure:
 piston-to-cylinder clearance

\[
\text{Cylinder bore “C” } = 38.000 \sim 38.010 \text{mm} \\
(1.4961 \sim 1.4965 \text{in}) \\
\text{Taper limit “T” } = 0.05 \text{mm (0.0020in)} \\
\text{Out-of-round “R” } = 0.05 \text{mm (0.0020in)}
\]

a. Measure cylinder bore “C” with the cylinder bore gauge.

NOTE:
Measure cylinder bore “C” by taking side-to-side and front-to-back measurements of the cylinder. Then, find the average of the measurements.

b. If out of specification, rebore or replace the cylinder, and replace the piston and piston rings as a set.

c. Measure piston skirt diameter “P” with the micrometer.

\[
\begin{array}{|c|c|}
\hline
\text{Piston size “P”} & \text{Standard} \\
\hline
& 37.975 \sim 37.990 \text{mm} \\
(1.4951 \sim 1.4957 \text{in}) \\
\hline
\end{array}
\]

d. If out of specification, replace the piston and piston rings as a set.
e. Calculate the piston-to-cylinder clearance with the following formula.

\[
\text{Piston-to-cylinder clearance} = \text{Cylinder bore} \text{ "C"} - \text{Piston skirt diameter} \text{ "P"}
\]

Piston-to-cylinder clearance

- \(0.010 \sim 0.035\text{mm}(0.0004 \sim 0.0014\text{in})\)
- \(<\text{Limit}>:0.15\text{mm}(0.0059\text{in})\)

f. If out of specification, rebore or replace the cylinder, and replace the piston and piston rings as a set.
CHECKING THE PISTON RINGS

1. Measure:
 • piston ring side clearance
 Out of specification → Replace the piston and piston rings as a set.

NOTE: Before measuring the piston ring side clearance, eliminate any carbon deposits from the piston ring grooves and piston rings.

Piston ring side clearance	Top ring	0.03 ~ 0.07 mm (0.0012 ~ 0.0028 in)
		<Limit>: 0.12 mm (0.0047 in)
	2nd ring	0.02 ~ 0.06 mm (0.0008 ~ 0.0024 in)
		<Limit>: 0.12 mm (0.0047 in)

2. Install:
 • piston ring (into the cylinder)

NOTE: Level the piston ring into the cylinder with the piston crown.

Piston ring end gap	Top ring	0.05 ~ 0.15 mm (0.0020 ~ 0.0059 in)
		<Limit>: 0.40 mm (0.0157 in)
	2nd ring	0.05 ~ 0.17 mm (0.0020 ~ 0.0067 in)
	Oil ring	0.20 ~ 0.70 mm (0.0079 ~ 0.0276 in)

3. Measure:
 • piston ring end gap
 Out of specification → Replace the piston ring.

NOTE: The oil ring expander spacer's end gap cannot be measured. If the oil ring rail's gap is excessive, replace all three piston rings.
CHECKING THE PISTON PIN

1. Check:
 • piston pin
 Blue discoloration/grooves → Replace the piston pin and then check the lubrication system.

2. Measure:
 • piston pin outside diameter \(a \)
 Out of specification → Replace the piston pin.

 Piston pin outside diameter
 \[9.996 \sim 10.000 \text{ mm (0.3935 \sim 0.3937 in)}\]
 \(<\text{Limit}>:9.976 \text{ mm (0.3928 in)}\)

3. Measure:
 • piston pin bore diameter \(b \)
 Out of specification → Replace the piston.

 Piston pin bore diameter
 \[10.002 \sim 10.013 \text{ mm (0.3938 \sim 0.3942 in)}\]
 \(<\text{Limit}>:10.043 \text{ mm (0.3954 in)}\)

4. Calculate:
 • piston-pin-to-piston-pin-bore clearance
 Out of specification → Replace the piston pin and piston as a set.

 Piston-pin-to-piston-pin-bore clearance =
 Piston pin bore diameter \(b \) -
Piston pin outside diameter \(a \)

 Piston-pin-to-piston clearance
 \[0.002 \sim 0.017 \text{ mm (0.0001 \sim 0.0007 in)}\]
CHECKING THE TIMING CHAIN GUIDE
1. Check:
 - timing chain guide (exhaust side)
 Damage/wear → Replace

INSTALLING THE PISTON AND CYLINDER
1. Install:
 - oil ring expander ①
 - oil ring rail ②
 - 2nd ring ③
 - top ring ④

 NOTE:
 Be sure to install the piston rings so that the manufacturer's marks or numbers face up.

2. Install:
 - piston ①
 - piston pin ②
 - piston pin clip New ③

 NOTE:
 - Apply engine oil the piston pin.
 - Make sure the arrow mark ③ on the piston points towards the exhaust side of the cylinder.
 - Before installing the piston pin clip, cover the crankcase opening with a clean rag to prevent the clip from falling into the crankcase.
3. Install:
 - gasket New
 - dowel pins

4. Lubricate:
 - piston
 - piston rings
 - cylinder
 (with the recommended lubricant)

 Recommended lubricant
 Engine oil

5. Offset:
 - piston ring end gaps
 - Top ring
 - Lower oil ring rail
 - Upper oil ring rail
 - 2nd ring
 - Exhaust side

6. Install:
 - cylinder 1
 - timing chain guide(exhaust side)

NOTE:
- While compressing the piston rings with one hand, install the cylinder with the other hand.
- Pass the timing chain and timing chain guide (exhaust side) through the timing chain cavity.
V-Belt Case Cover

Order	**Job/Part**	**Q'ty**	**Remarks**
1 | Removing the V-belt case cover | 1 | Remove the parts in the order listed. |
1 | Kickstarter | 1 | |
2 | Cover | 1 | |
3 | V-belt case cover | 1 | |
4 | V-belt case cover gasket | 1 | |
5 | Dowel pin | 2 | For installation, reverse the removal procedure. |
Disassembling the kickstarter

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kick pinion gear</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Kick pinion gear clip</td>
<td>1</td>
<td>Refer to "V-BELT CASE COVER".</td>
</tr>
<tr>
<td>3</td>
<td>Circlip/Plate washer</td>
<td>1/1</td>
<td>Refer to "INSTALLING THE KICKSTARTER".</td>
</tr>
<tr>
<td>4</td>
<td>Kick starter shaft</td>
<td>1</td>
<td>For assembly, reverse the disassembly procedure.</td>
</tr>
<tr>
<td>5</td>
<td>Torsion spring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Solid bush</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

NEW
INSTALLING THE KICKSTARTER

1. Install:
 - solid bush
 - kick shaft assembly
 - torsion spring

2. Hook:
 - torsion spring

 NOTE:
 Hook the spring end on the kickstarter shaft as shown, and hook the other end on the projection.

3. Install:
 - plain washer
 - circlip New

4. Install:
 - kick pinion gear
 - kick pinion gear clip

 NOTE:
 - Lubricate the kick pinion gear clip and shaft with molybdenum disulfide oil.
 - Install the kick pinion gear clip at the position shown.
V-Belt And Primary/Secondary Sheave

Removing the V-belt and primary/secondary sheave

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary sheave nut/Plate washer</td>
<td>1/1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Oneway clutch</td>
<td>1</td>
<td>Refer to “REMOVING THE PRIMARY SHEAVE” and “INSTALLING THE SECONDARY SHEAVE, V-BELT AND PRIMARY SHEAVE”.</td>
</tr>
<tr>
<td>3</td>
<td>Primary fixed sheave</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Secondary sheave nut</td>
<td>1</td>
<td>Refer to “REMOVING THE SECONDARY SHEAVE AND V-BELT” and “INSTALLING THE SECONDARY SHEAVE, V-BELT AND PRIMARY SHEAVE”.</td>
</tr>
<tr>
<td>5</td>
<td>Clutch housing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Secondary sheave</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>V-belt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Plate washer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Collar</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Primary sliding sheave</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cam/Weight</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Slider</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Plate washer</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
</tbody>
</table>

For installation, reverse the removal procedure.
Disassembling the secondary sheave

Disassemble the parts in the order listed.

1. Clutch carrier nut
2. Clutch carrier
3. Clutch shoe spring
4. Compression spring
5. Secondary spring seat
6. Guide pin
7. Secondary sliding sheave
8. O-ring
9. Oil seal
10. Secondary fixed sheave

For assembly, reverse the disassembly procedure.

Refer to "DISASSEMBLING THE SECONDARY SHEAVE" and "ASSEMBLING THE SECONDARY SHEAVE".

Refer to "ASSEMBLING THE SECONDARY SHEAVE".

55Nm (5.5 m-kgs, 39.8 ft-lbs)
REMOVING THE PRIMARY SHEAVE

1. Remove:
 - primary sheave nut
 - plate washer
 - one-way clutch
 - primary fixed sheave

NOTE:
While holding the primary fixed sheave with the rotor holding tool ③, loosen the primary fixed sheave nut.

Rotor holding tool
90890-01235 (YU-01235)

REMOVING THE SECONDARY SHEAVE AND V-BELT

1. Remove:
 - secondary sheave nut
 - clutch housing

NOTE:
While holding the clutch housing with the sheave holder ③, loosen the secondary sheave nut.

Sheave holder
90890-01701 (YS-01880-A)

2. Loosen:
 - clutch carrier nut

CAUTION:
Do not remove the clutch carrier nut at this stage.

NOTE:
While holding the clutch carrier with the rotor holding tool ①, loosen the clutch carrier nut one full turn with the socket wrench ②.

Rotor holding tool
90890-01235
 YU-01235
Socket wrench (39mm)
90890-01493
3. Remove:
 • secondary sheave ①
 • V-belt ②

 NOTE:
 Remove the V-belt and secondary sheave from the primary sheave side.

DISASSEMBLING THE SECONDARY SHEAVE

1. Remove:
 • clutch carrier nut ①

 NOTE:
 Install the clutch spring holder ② and clutch spring holder arm ③ onto the secondary sheave as shown. Then, compress the spring, and remove the clutch carrier nut ①.

CHECKING THE CLUTCH SHOES

The following procedure applies to all of the clutch shoes.

1. Check:
 • clutch shoe
 Damage/wear → Replace the clutch shoes and springs as a set.
 Glazed areas → Sand with coarse sandpaper.

 NOTE:
 After sanding the glazed areas, clean the clutch with a cloth.

2. Measure:
 • clutch shoe thickness
 Out of specification → Replace the clutch shoes and springs as a set.
Belt Drive

Clutch shoe thickness
3.7mm (0.146in)
<Limit>: 2.0mm (0.079in)

Note:
- Inspect clutch shoes.
- After removing the clutch shoe spring, do not use them again.
- Replace the all three as a set.

Checking the V-Belt
1. Check:
 - V-belt
 Cracks/damage/wear → Replace.
 Grease/oil → Clean the primary and secondary sheave.

2. Measure:
 - V-belt width
 Out of specification → Replace.

V-belt width
17.9 mm (0.705 in)
<Limit>: 16.1 mm (0.634 in)

Checking the Primary Sheave
1. Check:
 - Primary sliding sheave
 - Primary fixed sheave
 Cracks/damage/wear → Replace the primary sliding sheave, primary fixed sheave and V-belt.

2. Check:
 - Free movement
 Stick or excessive play → Replace the primary sliding sheave or collar.

Note:
Insert the collar into the primary sliding sheave, and check for free movement.
CHECKING THE PRIMARY SHEAVE WEIGHTS

The following procedure applies to all of the primary sheave weights.

1. Check:
 • primary sheave weight
 Cracks/damage/wear → Replace.

2. Measure:
 • primary sheave weight outside diameter
 a
 Out of specification → Replace.

 Primary sheave weight outside diameter
 15 mm (0.591 in)
 <Limit>: 14.5 mm (0.571 in)

CHECKING THE SLIDER

1. Check:
 • slider ①
 Damage/wear → Replace

CHECKING THE SECONDARY SHEAVE

1. Check:
 • secondary fixed sheave
 • secondary sliding sheave
 Cracks/damage/wear → Replace the secondary fixed and sliding sheaves as a set.

2. Check:
 • torque cam groove ①
 Damage/wear → Replace the secondary fixed and sliding sheaves as a set.

3. Check:
 • guide pin ②
 Damage/wear → Replace the secondary fixed and sliding sheaves as a set.
ASSEMBLING THE PRIMARY SHEAVE

1. Clean:
 • primary fixed sheave ①
 • primary sliding sheave ②
 • collar ③
 • primary sheave weights ④

 NOTE:
 Use thinner to clean up grease, dirt on the primary sliding sheave cam side ⑤.

2. Install:
 • primary sliding sheave ①
 • primary sheave weights ②
 • collar ③

3. Install:
 • sliders ①
 • cam ②
ASSEMBLING THE SECONDARY SHEAVE

1. Lubricate:
 - secondary fixed sheave's inner surface
 - secondary sliding sheave's inner surface
 - oil seals
 - bearings
 (with the recommended lubricant)

 Recommended lubricant
 BEL-RAY assembly lube®

2. Install:
 - secondary sliding sheave

 NOTE:
 Install the secondary sliding sheave onto the secondary fixed sheave with the oil seal guide.

 Oil seal guide
 90890-01384 (YM-33299)

3. Install:
 - guide pin

4. Lubricate:
 - guide pin groove
 - o-ring
 (with the recommended lubricant)

 Recommended lubricant
 BEL-RAY assembly lube®
5. Install:
- secondary sheave
- spring
- clutch carrier

NOTE:
Attach the clutch spring holder and clutch spring holder arm onto the secondary sheave as shown. Then, compress the spring, and tighten the clutch carrier nut.

Clutch spring holder
90890-01337 (YM-33285)
(YM-33285-6)

INSTALLING THE SECONDARY SHEAVE, V-BELT AND PRIMARY SHEAVE

1. Install:
- V-belt
- secondary sheave

CAUTION:
Do not allow grease to contact the V-belt, secondary sheave assembly.

NOTE:
- Install the V-belt onto the primary sheave side.
- Install the V-belt with printed arrow mark on the V-belt facing in the direction shown in the illustration.

2. Tighten:
- clutch carrier nut

55Nm (5.5m • kg, 39.8ft • lb)

NOTE:
While holding the clutch carrier with the rotor holding tool, tighten the clutch carrier nut with the socket wrench.
3. Install:
- clutch housing ①
- secondary sheave nut ②

\[40 \text{Nm} (4.0 \text{m} \cdot \text{kg}, 28.9 \text{ft} \cdot \text{lb}) \]

NOTE:
Tighten the secondary sheave nut with the sheave holder ③.

4. Install:
- primary fixed sheave ①
- oneway clutch
- plate washer
- primary sheave nut ②

\[30 \text{Nm} (3.0 \text{m} \cdot \text{kg}, 21.7 \text{ft} \cdot \text{lb}) \]

NOTE:
While holding the primary fixed sheave with the rotor holding tool ③, tighten the primary fixed sheave nut.
5. Position:
 • V-belt ①

NOTE:
Position the V-belt in the primary sheave ② (when the pulley is at its widest position) and in the secondary sheave ③ (when the pulley is at its narrowest position), and make sure the V-belt is tight.
Removing the stator coil assembly

- **Coolant**
- Single seat/Trunk
- Front cover
- Side cover (left and right)
- Battery cover/Battery
- Footrest board
- Radiator

Table

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crankshaft position sensor coupler/Stator coil assembly coupler</td>
<td>1/1</td>
<td>Remove the parts in the order listed. Drain. Refer to "CHANGING THE COOLANT" in chapter 3.</td>
</tr>
<tr>
<td>2</td>
<td>Fan</td>
<td>1</td>
<td>Refer to "COVER AND PANEL" in chapter 3.</td>
</tr>
<tr>
<td>3</td>
<td>Nut/Plate washer</td>
<td>1/1</td>
<td>Refer to "RADIATOR" in chapter 6. Disconnect.</td>
</tr>
<tr>
<td>4</td>
<td>AC magneto rotor</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Woodruff key</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
5-54

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Lock plate</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
<tr>
<td>7</td>
<td>Crankshaft position sensor</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Stator coil assembly</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Removing the starter clutch

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Removing the starter clutch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engine oil</td>
<td>1</td>
<td>Remove the parts in the order listed. Drain. Refer to “CHANGING THE ENGINE OIL” in chapter 3. Refer to “REMOVING THE AC MAGNETO” and “INSTALLING THE AC MAGNETO”. CAUTION: The starter clutch nut is left-hand thread. Refer to “REMOVING THE STARTER CLUTCH” and “INSTALLING THE STARTER CLUTCH”. For installation, reverse the removal procedure.</td>
</tr>
<tr>
<td>1</td>
<td>AC magneto rotor</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Stator coil assembly</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Crankcase cover(right)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Starter clutch nut</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Washer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Roller</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Starter wheel gear</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Idle gear</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Drain.

Refer to “CHANGING THE ENGINE OIL” in chapter 3.

Refer to “REMOVING THE AC MAGNETO” and “INSTALLING THE AC MAGNETO”.

CAUTION: The starter clutch nut is left-hand thread.

Refer to “REMOVING THE STARTER CLUTCH” and “INSTALLING THE STARTER CLUTCH”.

For installation, reverse the removal procedure.
REMOVING THE AC MAGNETO

1. Remove:
 - AC magneto rotor nut
 - washer

NOTE:
- While holding the AC magneto rotor with the sheave holder, loosen the AC magneto rotor nut.
- Do not allow the sheave holder to touch the projection on the AC magneto rotor.

Sheave holder
90890-01701
YS-01880-A

2. Remove:
 - AC magneto rotor (with the flywheel puller set)
 - woodruff key

CAUTION:
To protect the end of the crankshaft, place an appropriate sized socket between the flywheel puller set’s center bolt and the crankshaft.

NOTE:
- Make sure the flywheel puller is centered over the AC magneto rotor.

Flywheel puller set
90890-01468
YU-33270-B
REMOVING THE STARTER CLUTCH

1. Remove:
 - crankcase cover (right)

NOTE:
Loosen each bolt 1/4 of a turn at a time, in stages and in a crisscross pattern. After all of the bolts are fully loosened, remove them.

2. Remove:
 - starter clutch nut
 - washer
 - starter wheel gear
 - roller
 - collar
 - starter clutch
 - idle gear

NOTE:
The starter clutch nut is left-hand thread.
CHECKING THE STARTER CLUTCH

1. Check:
 • starter clutch roller
 Damage/wear → Replace.

2. Check:
 • starter clutch idle gear
 • starter wheel gear
 Burrs/chips/roughness/wear → Replace the defective part(s).

3. Check:
 • starter wheel gear's contacting surfaces
 Damage/pitting/wear → Replace the starter clutch gear.

4. Check:
 • starter clutch operation

 a. Install the starter wheel gear ① onto the starter clutch ② and hold the starter clutch.
 b. When turning the starter wheel gear clockwise A, the starter clutch and the starter wheel gear should engage, otherwise the starter clutch is faulty and must be replaced.
 c. When turning the starter wheel gear counterclockwise B, it should turn freely, otherwise the starter clutch is faulty and must be replaced.
INSTALLING THE STARTER CLUTCH

1. Install:
 - idle gear
 - starter clutch
 - collar
 - roller
 - starter wheel gear
 - washer
 - starter clutch nut

 \[90 \text{ Nm (9.0 m*kg, 65.1 ft*lb)}\]

NOTE:
The starter clutch nut is left-hand thread.

2. Install:
 - gasket [New]
 - crankcase cover (right)\[\)

 \[10 \text{ Nm (1.0 m*kg, 7.2 ft*lb)}\]

INSTALLING THE AC MAGNETO

1. Install:
 - stator coil assembly\[\)
 - crankshaft position sensor\[\)
 - woodruff key\[\)
 - AC magneto rotor
 - washer
 - AC magneto rotor nut

NOTE:
- Clean the tapered portion of the crankshaft and the AC magneto rotor hub.
- When installing the AC magneto rotor, make sure the woodruff key is properly seated in the keyway of the crankshaft.
2. Tighten:
 • AC magneto rotor nut ①

 43 Nm (4.3 m • kg, 31.1 ft • lb)

NOTE:

• While holding the AC magneto rotor ② with the sheave holder ③, tighten the AC magneto rotor nut.
• Do not allow the sheave holder to touch the projection on the AC magneto rotor.

Sheave holder

90890-01701
YS-01880-A
Removing the oil pump

- **Radiator**
- **AC magneto**
- **Starter clutch**
- **Drive gear**
- **Circlip/Plate washer**
- **Oil pump driven gear**
- **Dowel pin**
- **Oil pump**

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drive gear</td>
<td>1</td>
<td>Remove the parts in the order listed. Refer to "RADIATOR" in chapter 6. Refer to "STARTER CLUTCH AND AC MAGNETO".</td>
</tr>
<tr>
<td>2</td>
<td>Circlip/Plate washer</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Oil pump driven gear</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dowel pin</td>
<td>2</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
<tr>
<td>5</td>
<td>Oil pump</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
CHECKING THE OIL PUMP

1. Check:
 - oil pump drive gear
 - oil pump driven gear
 - oil pump housing
 - oil pump housing cover
 Cracks/damage/wear → Replace the defective part(s).

2. Measure:
 - inner-rotor-to-outer-rotor-tip clearance [A]
 - outer-rotor-to-oil-pump-housing clearance [B]
 - oil-pump-housing-to-inner-rotor-and-outer-rotor clearance [C]
 Out of specification → Replace the oil pump.

 ① Inner rotor
 ② Outer rotor
 ③ Oil pump housing

 ![Inner-rotor-to-outer-rotor-tip clearance](A)
 0.15 mm (0.006 in) or less
 <Limit>: 0.23 mm (0.009 in)

 ![Outer-rotor-to-oil-pump-housing clearance](B)
 0.13 ~ 0.18 mm (0.005 ~ 0.007 in)
 <Limit>: 0.25 mm (0.010 in)

 ![Oil-pump-housing-to-inner-rotor-and-outer-rotor clearance](C)
 0.07 ~ 0.12 mm (0.003 ~ 0.005 in)
 <Limit>: 0.19 mm (0.008 in)

3. Check:
 - oil pump operation
 Rough movement → Repeat steps (1) and (2) or replace the defective part(s).
ASSEMBLING THE OIL PUMP

1. Lubricate:
 - inner rotor
 - outer rotor
 - oil pump shaft
 (with the recommended lubricant)

 Recommended lubricant

 Engine oil

2. Install:
 - oil pump shaft ①
 (to the oil pump housing ②)
 - pin ③
 - inner rotor ④
 - outer rotor ⑤
 - oil pump housing cover ⑥
 - oil pump housing screw

 \[4 \text{ Nm (0.4 m \cdot kg, 2.9 ft \cdot lb)} \]

 NOTE:
 When installing the inner rotor, align the pin ③ in the oil pump shaft with the groove ④ in the inner rotor ④.

3. Check:
 - oil pump operation
 Refer to “CHECKING THE OIL PUMP”.

INSTALLING THE OIL PUMP

1. Install:
 - oil pump drive gear ①
 - gasket New
 - oil pump ②
 - oil pump bolt

 \[4 \text{ Nm (0.4 m \cdot kg, 2.9 ft \cdot lb)} \]

 CAUTION:
 After tightening the bolts, make sure the oil pump turns smoothly.
Removing the transmission
Transmission oil
Muffler/Bracket
Rear wheel
V-belt case cover
Secondary sheave
1 Transmission cover
2 Transmission cover gasket
3 Dowel pin
4 Main axle
5 Drive axle
6 Primary drive gear

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove parts in order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Drain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Refer to "CHANGING THE TRANSMISSION OIL" in chapter 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Refer to "ENGINE REMOVAL"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Refer to "REAR WHEEL AND BRAKE" in chapter 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Refer to "BELT DRIVE"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For installation, reverse the removal procedure.
CHECKING THE TRANSMISSION

1. Measure:
 • main axle runout
 (with a centering device and dial gauge)
 Out of specification → Replace the main axle.

 Main axle runout limit
 0.04 mm (0.002 in)

2. Measure:
 • drive axle runout
 (with a centering device and dial gauge)
 Out of specification → Replace the drive axle.

 Primary drive gear shaft runout limit
 0.04 mm (0.002 in)

3. Check:
 • transmission gears
 Blue discoloration/pitting/wear → Replace the defective gear(s).
 • transmission gear dogs
 Cracks/damage/rounded edges → Replace the defective gear(s).

4. Check:
 • transmission gear engagement
 (each pinion gear to its respective wheel gear)
 Incorrect → Reassemble the transmission axle assemblies.

5. Check:
 • transmission gear movement
 Rough movement → Replace the defective part(s).

6. Check:
 • circlip
 Bends/damage/looseness → Replace.
CRANKSHAFT ASSEMBLY

Removing the crankshaft assembly

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tension spring</td>
<td>1</td>
<td>Remove the parts in the order listed. Remove the parts in the order listed. Refer to "ENGINE REMOVAL". Refer to "CYLINDER HEAD". Refer to "CYLINDER AND PISTON". Refer to "BELT DRIVE". Refer to "COOLING SYSTEM" in chapter 6. Refer to "STARTER CLUTCH AND AC MAGNETO". Refer to "OIL PUMP". Refer to "TRANSMISSION". Refer to "REAR WHEEL AND BRAKE" in chapter 4.</td>
</tr>
<tr>
<td>2</td>
<td>Circlip/Plate washer</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pin</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Centerstand</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **10Nm (1.0 n·kg, 7.2 ft·lbs)**
- **30Nm (3.2 n·kg, 23.1 ft·lbs)**
- **7Nm (0.7 n·kg, 5.1 ft·lbs)**
CRANKSHAFT

Table of Components

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Hook</td>
<td>1</td>
<td>Refer to "DISASSEMBLING THE CRANKCASE" and "ASSEMBLING THE CRANKCASE".</td>
</tr>
<tr>
<td>6</td>
<td>Drain plug</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Oil strainer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Compression spring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>O-ring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Crankcase(right)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Spacer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Dowel pin</td>
<td>2</td>
<td>Refer to "REMOVING THE CRANKSHAFT ASSEMBLY" and "INSTALLING THE CRANKSHAFT ASSEMBLY".</td>
</tr>
<tr>
<td>13</td>
<td>Guide</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Crankshaft</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Timing chain</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Crankcase(left)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Oil seal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Bolt/O-ring</td>
<td>1/1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
<tr>
<td>19</td>
<td>Timing chain guide (intake side)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

The diagram illustrates the components and their positions in the crankcase assembly. The annotations indicate the tightening torque for each component, with specific notes for the hook and drain plug. The crankcase can be disassembled and reassembled according to the instructions provided for each component.
DISASSEMBLING THE CRANKCASE

1. Remove:
 - centerstand assembly

2. Remove:
 - crankcase bolts

 NOTE:
 Loosen each bolt 1/4 of a turn at a time, in stages and in a crisscross pattern. After all of the bolts are fully loosened, remove them.

3. Remove:
 - right crankcase
 - spacer

 CAUTION:
 Tap on one side of the crankcase with a soft-face hammer. Tap only on reinforced portions of the crankcase, not on the crankcase mating surfaces. Work slowly and carefully and make sure the crankcase halves separate evenly.
REMOVING THE CRANKSHAFT ASSEMBLY

1. Remove:
 - crankshaft assembly(1)
 - timing chain(2)
 - timing chain guide(intake side)

NOTE:
- Before removing the crankshaft assembly, remove the timing chain from the crankshaft sprocket.
- The crankshaft assembly cannot be removed if the timing chain is attached onto the crankshaft sprocket.

CHECKING THE CRANKSHAFT AND CONNECTING ROD

1. Measure:
 - crankshaft runout
 Out of specification → Replace the crankshaft, bearing or both.

NOTE:
Turn the crankshaft slowly.

- Maximum crankshaft runout
 0.03mm(0.0012in)

2. Measure:
 - big end side clearance
 Out of specification → Replace the big end bearing, crankshaft pin, or connecting rod.

- Big end side clearance
 0.15~0.45mm(0.006~0.018in)
3. Measure:
- crankshaft width
 Out of specification → Replace the crankshaft.

Crankshaft width
42.45~42.50mm (1.671~1.673 in)

4. Check:
- crankshaft sprocket ①
 Damage/wear → Replace the crankshaft.
- bearing ②
 Cracks/damage/wear → Replace the crankshaft.
- oil pump drive gear
 Damage/wear → Replace the crankshaft.

5. Check:
- crankshaft journal
 Scratches/wear → Replace the crankshaft.
- crankshaft journal oil passage
 Obstruction → Blow out with compressed air.

CHECKING THE CRANKCASE
1. Thoroughly wash the crankcase halves in a mild solvent.
2. Thoroughly clean all the gasket surfaces and crankcase mating surfaces.
3. Check:
- crankcase
 Cracks/damage → Replace.
- oil delivery passages
 Obstruction → Blow out with compressed air.
CHECKING THE TIMING CHAIN AND TIMING CHAIN GUIDE (INTAKE SIDE)

1. Check:
 • timing chain
 Damage/stiffness → Replace the timing chain and camshaft sprocket as a set.

2. Check:
 • timing chain guide (intake side)
 Damage/wear → Replace.

CHECKING THE BEARINGS AND OIL SEALS

1. Check:
 • bearings
 Clean and lubricate the bearings, then rotate the inner race with your finger.
 Rough movement → Replace.

2. Check:
 • oil seals
 Damage/wear → Replace.

CHECKING THE CIRCLIPS AND WASHERS

1. Check:
 • circlips
 Bends/damage/looseness → Replace.
 • washers
 Bends/damage → Replace.
INSTALLING THE CRANKSHAFT

1. Install:
 - timing chain guide (intake side)
 - timing chain
 - crankshaft assembly

NOTE: Install the timing chain so it is not visible through the opening in the left crankcase.

CAUTION:
To avoid scratching the crankshaft and to ease the installation procedure, lubricate the oil seal lips with lithium-soap-based grease and each bearing with engine oil.

NOTE: Put the timing chain in parallel into the crankcase, then use hands to place the crankshaft assembly into the crankcase. Manually rotate the crankshaft to check whether it is tightly engaged with the timing chain. (if not, install again)

ASSEMBLING THE CRANKCASE

1. Thoroughly clean all the gasket mating surfaces and crankcase mating surfaces.
2. Apply:
 - sealant

Yamaha bond No. 1215
90890-85505
Sealant (Quick Gasket®)
ACC-11001-05-01

NOTE: Do not allow any sealant to come into contact with the oil gallery.
3. Install:
 • dowel pins
 • spacer
 • right crankcase

NOTE:
Tap lightly on the right crankcase with a soft-face hammer.

4. Tighten:
 • crankcase bolts

 ![Image](10Nm(1.0m • kg, 7.2ft • lb)]

NOTE:
Tighten the crankcase bolts in stages and in a crisscross pattern.

5. Apply:
 • engine oil
 (onto the crankshaft pin, bearing and oil delivery hole)

6. Check:
 • crankshaft operation
 Rough movement → Repair.
CHAPTER 6
COOLING SYSTEM

RADIATOR .. 6-1
CHECKING THE RADIATOR ... 6-2
INSTALLING THE RADIATOR .. 6-3

THERMOSTAT ... 6-4
CHECKING THE THERMOSTAT ... 6-5
INSTALLING THE THERMOSTAT .. 6-6

WATER PUMP .. 6-7
DISASSEMBLING THE WATER PUMP .. 6-9
CHECKING THE WATER PUMP .. 6-9
ASSEMBLING THE WATER PUMP .. 6-10
INSTALLING THE WATER PUMP .. 6-11
COOLING SYSTEM

Removing the radiator

- Front cover
- Side cover (left and right)
- Single seat/Trunk
- Footrest board
- Coolant

### Order	Job/Part	Q'ty	Remarks
1 | Radiator cover | 1 | Remove the parts in the order listed. Remove the parts in the order listed. Refer to “COVER AND PANEL” in chapter 3. Drain. Refer to “CHANGING THE COOLANT” in chapter 3.
2 | Radiator cap | 1 | Disconnect.
3 | Conduit hose | 1 | Disconnect.
4 | Radiator inlet hose | 1 | Disconnect.
5 | Radiator outlet hose | 1 | For installation, reverse the removal procedure.
6 | Radiator | 1 |
7 | Fan case | 1 |
CHECKING THE RADIATOR

1. Check:
 • radiator fins
 Obstruction → Clean.
 Apply compressed air to the rear of the radiator.
 Damage → Repair or replace.

 NOTE:
 Straighten any flattened fins with a thin, flat-head screwdriver.

2. Check:
 • radiator inlet hose
 • radiator outlet hose
 • conduit hose
 Cracks/damage → Replace.

3. Measure:
 • radiator cap opening pressure
 Below the specified pressure → Replace the radiator cap.

 Radiator cap opening pressure
 107.9 ~ 137.3kPa
 (1.1 ~ 1.4kg/cm², 15.6 ~ 19.9psi)

 a. Install the radiator cap tester ① and radiator cap tester adapter ② to the radiator cap ③.

 b. Apply the specified pressure for ten seconds and make sure there is no drop in pressure.

4. Check:
 • radiator fan
 Damage → Replace.
 Malfunction → Check and repair.
INSTALLING THE RADIATOR

1. Fill:
 - cooling system
 (with the specified amount of the recommended coolant)
 Refer to “CHANGING THE COOLANT” in chapter 3.

2. Check:
 - cooling system
 Leaks → Repair or replace any faulty part.

 a. Attach the radiator cap tester ① to the radiator.

 b. Apply 100 kPa (1.0 kg/cm², 14.22 psi) of pressure.
 c. Measure the indicated pressure with the gauge.

3. Measure:
 - radiator cap opening pressure
 Below the specified pressure → Replace the radiator cap.
 Refer to “CHECKING THE RADIATOR”.

Radiator cap tester
90890-01325, YU-24460-01
Radiator cap tester adapter
90890-01352, YU-33984
Removing the thermostat

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clip</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Thermostat inlet hose</td>
<td>1</td>
<td>Refer to "COVER AND PANEL" in chapter 3.</td>
</tr>
<tr>
<td>3</td>
<td>Clip</td>
<td>1</td>
<td>Drain. Refer to "CHANGING THE COOLANT" in chapter 3.</td>
</tr>
<tr>
<td>4</td>
<td>Thermostat outlet hose</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>5</td>
<td>Thermostat cover</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>6</td>
<td>Thermostat</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
</tbody>
</table>

Drain.

Refer to "CHANGING THE COOLANT" in chapter 3.

Disconnect.

For installation, reverse the removal procedure.
CHECKING THE THERMOSTAT

1. Check:
 • thermostat ①
 Does not open at 85 ~100°C (185 ~212°F)
 ▶ Replace.

 a. Suspend the thermostat in a container filled with water.
 b. Slowly heat the water.
 c. Place a thermometer in the water.
 d. While stirring the water, observe the thermostat and thermometer's indicated temperature.

2. Check:
 • thermostat cover
 Cracks/damage ▶ Replace.

3. Check:
 • thermostat inlet hose
 • thermostat outlet hose
 Cracks/damage ▶ Replace.

NOTE:
If the accuracy of the thermostat is in doubt, replace it. A faulty thermostat could cause serious overheating or overcooling.
INSTALLING THE THERMOSTAT

1. Install:
 • thermostat
 • thermostat cover

 \[10\text{Nm}(1.0\text{m} \cdot \text{kg}, 7.2\text{ft} \cdot \text{lb})\]

 NOTE:
 Align the breather \(a\) of thermostat to mark \(b\) of thermostat before installation.

2. Fill:
 • cooling system
 (with the specified amount of the recommended coolant)
 Refer to “CHANGING THE COOLANT” in chapter 3.

3. Check:
 • cooling system
 Leaks \(\rightarrow\) Repair or replace any faulty part.

4. Measure:
 • radiator cap opening pressure
 Below the specified pressure \(\rightarrow\) Replace the radiator cap.
 Refer to “CHECKING THE RADIATOR”.

Removing the water pump

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Breather hose</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Thermostat inlet hose</td>
<td>1</td>
<td>Refer to "COVER AND PANEL" in chapter 3.</td>
</tr>
<tr>
<td>3</td>
<td>Water pump inlet hose</td>
<td>1</td>
<td>Drain.</td>
</tr>
<tr>
<td>4</td>
<td>Radiator outlet hose</td>
<td>1</td>
<td>Refer to "CHANGING THE COOLANT" in chapter 3.</td>
</tr>
<tr>
<td>5</td>
<td>Water pump housing cover</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>6</td>
<td>Gasket</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>7</td>
<td>Water pump housing</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>8</td>
<td>Plate</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Impeller shaft</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Torque: 10Nm(1.0m • kg, 7.2 ft • lb)
<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Oil seal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Bearing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Gasket</td>
<td>1</td>
<td>For installation, reverse the removal procedure.</td>
</tr>
</tbody>
</table>

10Nm (1.0m • kg, 7.2 ft • lb)
DISASSEMBLING THE WATER PUMP

1. Remove:
 - water pump housing cover
 - dowel pin
 - gasket

2. Remove:
 - plate
 - impeller shaft
 - gasket
 - oil seal
 (with a thin, flat-head screwdriver)
 - bearing

NOTE:
- Remove the oil seal from the inside of the water pump housing.
- Remove the bearing from the inside of the water pump housing.

CHECKING THE WATER PUMP

1. Check:
 - water pump housing cover
 - water pump housing
 - impeller
 Cracks/damage/wear → Replace.

2. Check:
 - water pump seal
 Cracks/damage/wear → Replace.

3. Check:
 - bearing
 Rough movement → Replace.

4. Check:
 - radiator outlet hose
 Cracks/damage/wear → Replace.
ASSEMBLING THE WATER PUMP

1. Install:
 - bearing

 NOTE:
 - Before installing the oil seal, apply tap water or coolant onto its outer surface.
 - Install the oil seal with a socket that matches its outside diameter.

2. Install:
 - water pump seal
 New
 (into the water pump housing)

 CAUTION:
 Never lubricate the water pump seal surface with oil or grease.

 NOTE:
 - Install the water pump seal with the special tools.
 - Press in depth of water pump and oil seal is 5.5~6.0mm.

 ![Mechanical seal installer](90890-04145) 3
 ![Middle driven shaft bearing driver](90890-04058) 4
 YM-04058

3. Measure:
 - impeller shaft tilt
 Out of specification → Replace the impeller shaft.

 ![Impeller shaft tilt limit](0.15mm(0.0059in))

 1. Straightedge
 2. Impeller

4. Install:
 - impeller shaft
 - plate

 CAUTION:
 After installation, check that the impeller shaft rotates smoothly.
5. Install:
- Gasket [New]
- Water pump housing cover

EAS00478

INSTALLING THE WATER PUMP

1. Install:
- Water pump assembly

10Nm(1.0m • kg, 7.2ft • lb)

NOTE:
Align the slit on the impeller shaft with the projection on the camshaft sprocket bolt.

2. Install:
- Breather hose
- Thermostat inlet hose
- Water pump outlet hose
- Radiator outlet hose

3. Fill:
- Cooling system
 (with the specified amount of the recommended coolant)
 Refer to “CHANGING THE COOLANT” in chapter 3.

4. Check:
- Cooling system
 Leaks → Repair or replace the faulty part.

5. Measure:
- Radiator cap opening pressure
 Below the specified pressure → Replace the radiator cap.
 Refer to “CHECKING THE RADIATOR”.

6-11
CHAPTER 7
FUEL INJECTION SYSTEM

FUEL INJECTION SYSTEM ... 7-1
WIRING DIAGRAM ... 7-2
ECU’S SELF-DIAGNOSTIC FUNCTION ... 7-4
CHECKING FOR A DEFECTIVE ENGINE TROUBLE WARNING
 LIGHT BULB ... 7-5
SELF-DIAGNOSTIC FUNCTION TABLE ... 7-5
Self-diagnostic function table .. 7-5
TROUBLESHOOTING CHART ... 7-7
DIAGNOSTIC MODE .. 7-8
TROUBLESHOOTING DETAILS .. 7-12
THROTTLE BODY AND FUEL INJECTOR ... 7-26
THROTTLE BODY ... 7-26
FUEL INJECTOR AND FUEL HOSE .. 7-27
FUEL TANK .. 7-28
REMOVING THE FUEL HOSE ... 7-29
REMOVING THE FUEL PUMP .. 7-29
CHECKING THE THROTTLE BODY ... 7-30
INSTALLING THE FUEL PUMP .. 7-31
INSTALLING THE FUEL HOSE .. 7-31
CHECKING THE FUEL PUMP AND PRESSURE REGULATOR OPERATION 7-32
CHECKING THE THROTTLE POSITION SENSOR ... 7-32
CHECKING THE ISC (IDLE SPEED CONTROL) VALVE ... 7-34
AIR INDUCTION SYSTEM ... 7-35
AIR INJECTION ... 7-35
AIR CUT-OFF VALVE ... 7-35
AIR INDUCTION SYSTEM DIAGRAMS .. 7-36
AIR CUT-OFF VALVE AND AIR FILTER CASE ... 7-37
CHECKING THE AIR INDUCTION SYSTEM ... 7-38
FUEL INJECTION SYSTEM

1. ECU
2. Engine trouble warning light
3. Lean angle cut-off switch
4. Fuel hose
5. Ignition coil
6. Fuel injector
7. Intake air pressure sensor
8. ISC (Idle speed control) valve
9. Intake air temperature sensor
10. Battery
11. Air filter case
12. Catalytic converter
13. Crankshaft position sensor
14. Coolant temperature sensor
15. Spark plug
16. Fuel tank
17. Fuel pump
18. Throttle position sensor
� AC magneto
3 Main fuse
4 Battery
8 Engine stop switch
9 ECU
10 Main switch
11 Intake air pressure sensor
12 Intake air temperature sensor
13 Throttle position sensor
14 Lean angle cut-off switch
15 Coolant temperature sensor
16 Ignition coil
17 Spark plug
18 Fuel injector
19 Fuel pump
20 ISC (idle speed control) valve
22 Dimmer switch
24 Headlight
33 High beam indicator light
35 Engine trouble warning light
36 Coolant temperature indicator light
37 Speed sensor
38 FI diagnostic tool (optional)
40 Sidestand switch (optional)
FUEL INJECTION SYSTEM

ECU'S SELF-DIAGNOSTIC FUNCTION
The ECU is equipped with a self-diagnostic function in order to ensure that the engine control system is operating normally. If this function detects a malfunction in the system, it immediately operates the engine under substitute characteristics and illuminates the engine trouble warning light to alert the rider that a malfunction has occurred in the system. Once a malfunction has been detected, a fault code is stored in the memory of the ECU.

- To inform the rider that the fuel injection system is not functioning correctly, the engine trouble warning light flashes when the start switch is being pushed to start the engine.
- If a malfunction is detected in the system by the self-diagnostic function, this mode provides an appropriate substitute characteristic operation, and alerts the rider of the detected malfunction by illuminating the engine trouble warning light.
- After the engine has been stopped, the lowest fault code number appears on the engine trouble warning light (or displayed on the FI diagnostic tool). It remains stored in the memory of the ECU until it is deleted.

Engine trouble warning light fault code indication
Digit of 10: Cycles of 1 sec. ON and 1.5 sec. OFF.
Digit of 1: Cycles of 0.5 sec, ON and 0.5 sec. OFF.
<Example> 42

<table>
<thead>
<tr>
<th>Light ON</th>
<th>Light OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Engine trouble warning light indication and FI system operating condition

<table>
<thead>
<tr>
<th>Engine condition</th>
<th>Warning light indication</th>
<th>FI operation</th>
<th>Vehicle operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate (cranking with electric starter)</td>
<td>Flashing</td>
<td>Operation stopped</td>
<td>Unable</td>
</tr>
<tr>
<td>Stop</td>
<td>Flashing (indicate the fault code)</td>
<td>Operated with substitute characteristics in accordance with the description of the malfunction</td>
<td>Able</td>
</tr>
</tbody>
</table>

7-4
CHECKING FOR A DEFECTIVE ENGINE TROUBLE WARNING LIGHT BULB

The engine trouble warning light comes on for 2 seconds after the main switch has been turned “ON” and when the start switch is being pushed. If the warning light does not come on under these conditions, the warning light bulb may be defective.

<table>
<thead>
<tr>
<th>Fault code No.</th>
<th>Item</th>
<th>Symptom</th>
<th>Engine startability</th>
<th>Vehicle driveability</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Crankshaft position sensor</td>
<td>No normal signals are received from the crankshaft position sensor.</td>
<td>Unable</td>
<td>Unable</td>
</tr>
<tr>
<td>13</td>
<td>Intake air pressure sensor (open or short circuit) (pipe system)</td>
<td>Intake air pressure sensor-open or short circuit detected. Faulty intake air pressure sensor pipe system.</td>
<td>Able</td>
<td>Able</td>
</tr>
<tr>
<td>14</td>
<td>Intake air pressure sensor-open or short circuit detected. Faulty intake air pressure sensor pipe system.</td>
<td>Able</td>
<td>Able</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Throttle position sensor (open or short circuit) (stuck)</td>
<td>Throttle position sensor-open or short circuit detected. A stuck throttle position sensor is detected.</td>
<td>Able</td>
<td>Able</td>
</tr>
<tr>
<td>16</td>
<td>Broken or disconnected blue/yellow lead of the ECU</td>
<td>Open circuit in the input line (blue/yellow lead) of the ECU is detected.</td>
<td>Unable</td>
<td>Unable</td>
</tr>
<tr>
<td>21</td>
<td>Coolant temperature sensor</td>
<td>Coolant temperature sensor-open or short circuit is detected.</td>
<td>Able</td>
<td>Able</td>
</tr>
<tr>
<td>22</td>
<td>Intake temperature sensor</td>
<td>Intake temperature sensor-open or short circuit is detected.</td>
<td>Able</td>
<td>Able</td>
</tr>
<tr>
<td>33</td>
<td>Faulty ignition</td>
<td>Open circuit detected in the primary lead of the ignition coil.</td>
<td>Unable</td>
<td>Unable</td>
</tr>
<tr>
<td>37</td>
<td>ISC (idle speed control) valve (stuck fully open)</td>
<td>Engine speed is high when the engine is idling.</td>
<td>Able</td>
<td>Able</td>
</tr>
</tbody>
</table>
FUEL INJECTION SYSTEM

<table>
<thead>
<tr>
<th>Fault code No.</th>
<th>Item</th>
<th>Symptom</th>
<th>Engine startability</th>
<th>Vehicle driveability</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Fuel injector</td>
<td>Fuel injector open or short circuit is detected.</td>
<td>Unable</td>
<td>Unable</td>
</tr>
<tr>
<td>30 41</td>
<td>Lean angle cut-off switch (latch up detected) (open or short circuit)</td>
<td>The vehicle has overturned. Lean angle cut-off switch-open or short circuit is detected.</td>
<td>Unable</td>
<td>Unable</td>
</tr>
<tr>
<td>42</td>
<td>Speed sensor</td>
<td>No normal signals are received from the speed sensor.</td>
<td>Able</td>
<td>Able</td>
</tr>
<tr>
<td>43</td>
<td>Fuel system voltage (monitoring voltage)</td>
<td>Power supply to the fuel injector, fuel pump and ignition coil are not normal.</td>
<td>Able</td>
<td>Able</td>
</tr>
<tr>
<td>44</td>
<td>Error in reading from or writing on E2PROM</td>
<td>An error is detected while reading from or writing on E2PROM (CO adjustment value).</td>
<td>Able</td>
<td>Able</td>
</tr>
<tr>
<td>46</td>
<td>Vehicle system power supply (monitoring voltage)</td>
<td>Power supply to FI system is not normal. (red lead)</td>
<td>Able</td>
<td>Able</td>
</tr>
<tr>
<td>50</td>
<td>ECU internal malfunction (memory check error)</td>
<td>Faulty ECU memory. When this malfunction is detected, the code number might not appear on the engine trouble warning light or displayed on FI diagnostic tool.</td>
<td>Unable</td>
<td>Unable</td>
</tr>
<tr>
<td>61</td>
<td>ISC (idle speed control) valve unit (open or short circuit)</td>
<td>ISC (idle speed control) valve unit-open or short circuit detected.</td>
<td>Able</td>
<td>Able</td>
</tr>
<tr>
<td></td>
<td>Start unable warning</td>
<td>Engine trouble warning light flashes when the start switch is turned ON.</td>
<td>Relay is not activated even if the crank signal is input while the start switch is pushed.</td>
<td>Unable</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING CHART

Engine operation is not normal or the engine trouble warning light is on.

*Engine trouble warning light may not come on even if the engine operation is not normal.

The engine trouble warning light comes on.

Check the fault code number displayed on the FI diagnostic tool.

Identify the system with the malfunction. Refer to "FAIL-SAFE ACTIONS TABLE".

Identify the probable cause of malfunction. Refer to "Fault code table".

Check and repair the probable cause of malfunction.

<table>
<thead>
<tr>
<th>Faultcode No.</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check and repair. Refer to "TROUBLESHOOTING DETAILS". Monitor the operation of the sensors and actuators in the diagnostic mode. Refer to "Diagnostic mode table".</td>
<td>Check and repair. Refer to "FAIL-SAFE ACTIONS TABLE".</td>
<td></td>
</tr>
</tbody>
</table>

Perform ECU reinstatement action. Refer to "Reinstatement method" in "TROUBLESHOOTING DETAILS".

Turn the main switch to "OFF", turn the main switch back to "ON", and then check if the fault code number is still displayed.

Fault code number not displayed

Repairs completed

Erasing the malfunction history:

The malfunction history is stored even if the main switch is turned OFF. The malfunction history must be erased in the diagnostic mode. Refer to "Diagnostic mode table (Diagnostic code No.62)".

* Operated when the engine trouble warning light is on.
FUEL INJECTION SYSTEM

DIAGNOSTIC MODE
It is possible to monitor the sensor output data or check the activation of actuators with connecting the FI diagnostic tool to the normal mode or the diagnostic monitoring mode.

FI diagnostic tool
90890-03182
YU-03182

Setting the normal mode
NOTE:
The engine speed, engine temperature, and fault code, if detected, can be displayed on the LCD of the FI diagnostic tool when the tool is connected to the vehicle and is set to the normal mode.

1. Turn the main switch to “OFF” and the engine stop switch to “RUN”.
2. Disconnect the self diag signal connector 1, and then connect the FI diagnostic tool 2 as shown.
3. Turn the main switch to “ON” and start the engine.

NOTE:
- Engine temperature and engine revolution appears on the LCD of the FI diagnostic tool.
- ”POWER” LED (Green) comes on.
- If a malfunction is detected in the system, ”WARNING” LED (Orange) comes on. However the fault code is not appears on the LCD of FI diagnostic tool.

4. Stop the engine.

NOTE:
If a malfunction is detected in the system, the fault code appears on the LCD of the FI diagnostic tool. And also, ”WARNING” LED (Orange) comes on.

5. Turn the main switch to “OFF” to cancel the normal mode.
6. Disconnect the FI diagnostic tool and connect the self diag signal connector.
Setting the diagnostic mode

1. Turn the main switch to “OFF” and the engine stop switch to “RUN”.
2. Disconnect the self diag signal connector ①, and then connect the FI diagnostic-tool ② as shown.
3. While press the “MODE” button, turn the main switch to “ON”.

NOTE:
- “DIAG” appears on the LCD of the FI diagnostic tool.
- “POWER” LED (Green) comes on.

4. Press the “UP” button to select the CO adjustment mode “CO” or the diagnostic mode “DIAG”.
5. After selecting “DIAG”, press the “MODE” button.
6. Select the diagnostic code number that applies to the item that was verified with the fault code number by pressing the “UP” and “DOWN” buttons.

NOTE:
- The diagnostic code number appears on the LCD (D01-D70).
- To decrease the selected diagnostic code number, press the “DOWN” button. Press the “DOWN” button for 1 second or longer to automatically decrease the diagnostic code numbers.
- To increase the selected diagnostic code number, press the “UP” button. Press the “UP” button for 1 second or longer to automatically increase the diagnostic code numbers.

7. Verify the operation of the sensor or actuator.
 - Sensor operation
 The data representing the operating conditions of the sensor appears on the LCD.
 - Actuator operation
 Press the “MODE” button to operate the actuator.

8. Turn the main switch to “OFF” to cancel the diagnostic mode.
9. Disconnect the FI diagnostic tool and connect the self diag signal connector.
Fault code table

<table>
<thead>
<tr>
<th>Fault codeNo.</th>
<th>Symptom</th>
<th>Probable cause of malfunction</th>
<th>Diagnostic code</th>
</tr>
</thead>
</table>
| 12 | No normal signals are received from the crankshaft position sensor. | • Open or short circuit in wiring harness.
• Defective crankshaft position sensor.
• Malfunction in pickup rotor.
• Improperly installed sensor lead connector in the coupler. | |
| 13 | Intake air pressure sensor-open or short circuit detected. | • Open or short circuit in wiring sub lead.
• Open or short circuit in wiring harness.
• Defective intake air pressure sensor.
• Improperly installed sensor lead connector in the coupler. | D03 |
| 14 | Faulty intake air pressure sensor pipe system | • Intake air pressure sensor is disconnected or clogged. | D03 |
| 15 | Throttle position sensor-open or short circuit detected. | • Open or short circuit in wiring sub lead.
• Open or short circuit in wiring harness.
• Defective throttle position sensor.
• Improperly installed throttle position sensor lead connector in the coupler. | D01 |
| 16 | A stuck throttle position sensor is detected. | • Stuck throttle position sensor.
• Defective throttle position sensor. | D01 |
| 19 | Open circuit in the input line (blue/yellow lead) of ECU is detected when the start switch is pressed. | • Open circuit in wiring harness (ECU coupler). | D20 |
| 21 | Coolant temperature sensor-open or short circuit detected. | • Open or short circuit in wiring harness.
• Defective coolant temperature sensor.
• Improperly installed sensor lead connector in the coupler. | D06 |
| 22 | Intake air temperature sensor-open or short circuit detected. | • Open or short circuit in wire sub lead.
• Open or short circuit in wiring harness.
• Defective intake temperature sensor.
• Improperly installed sensor lead connector in the coupler. | D06 |
| 30 | The vehicle has overturned. | • Overturned condition. | D08 |
| 33 | Open circuit is detected in the primary lead of the ignition coil. | • Open circuit in wiring harness.
• Malfunction in ignition coil.
• Improperly installed primary lead connector in the coupler. | D30 |
| 37 | The ISC (idle speed control) valve is stuck fully open. | • Malfunction in throttle body.
• Malfunction in throttle cables.
• ISC (idle speed control) valve is stuck fully open. | D54 |
| 39 | Fuel injector open or short circuit is detected. | • Open or short circuit in wiring harness.
• Defective fuel injector.
• Improperly installed lead connector in the coupler. | D36 |
| 41 | Lean angle cut-off switch-open or short circuit detected. | • Open or short circuit in wiring harness.
• Defective lean angle cut-off switch.
• Improperly installed lead connector in the coupler. | D08 |
| 42 | No normal signals are received from the speed sensor. | • Open or short circuit in wiring harness.
• Defective speed sensor.
• Improperly installed lead connector in the coupler. | D07 |
| 43 | Power supply to the fuel injector, fuel pump and ignition coil are not normal. | • Open or short circuit in wiring harness. | D09 |
| 44 | An error is detected while reading or writing on E2PROM. | • Malfunction in ECU. (The CO adjustment value, code reregistering key code, and throttle valve fully closed notification value are not properly written on or read from the internal memory.) | D60 |
| 46 | Power supply to FI system is not normal (red lead) | • Malfunction in charging system. | |
| 50 | Faulty ECU memory. When this malfunction is detected, the code number might not appear on the meter. | • Malfunction in ECU. (The program and data are not properly written on or read from the internal memory.) | |
| 61 | ISC (idle speed control) valve open or short circuit is detected. | • Open or short circuit in wiring harness.
• Improperly installed lead connector in the coupler. | D54 |
NOTE:

- Check the intake air temperature and coolant temperature as close as possible to the intake air temperature sensor and the coolant temperature sensor respectively.
- If it is not possible to check the intake air temperature, use the ambient temperature as reference.

Diagnostic mode table

<table>
<thead>
<tr>
<th>Diagnostic code</th>
<th>Item</th>
<th>Description of action</th>
<th>Data displayed on FI diagnostic tool (reference value)</th>
</tr>
</thead>
</table>
| D01 | Throttle angle | Displays the throttle angle.
• Check with throttle fully closed.
• Check with throttle fully open. | 0-125 degrees
• Fully closed position (14-20)
• Fully open position (97-107) |
| D03 | Intake air pressure | Displays the intake air pressure.
• Check the pressure in the intake manifold. | Compare it to the value displayed on the FI diagnostic tool. |
| D05 | Intake air temperature | Displays the intake air temperature.
• Check the temperature in the intake manifold. | Compare it to the value displayed on the FI diagnostic tool. |
| D06 | Coolant temperature | Displays the coolant temperature.
• Check the temperature of the coolant. | Compare it to the value displayed on the FI diagnostic tool. |
| D07 | Vehicle speed pulse | Displays the accumulation of the vehicle pulses that are generated when the tire is spun. | (0-999; resets to 0 after 999)
OK if the numbers appear on the FI diagnostic tool. |
| D08 | Lean angle cut-off switch | Displays the lean angle cut-off switch values. | Upright: 0.4-1.4 V
Overturned: 3.7-4.4V |
| D09 | Fuel system voltage (battery voltage) | Displays the fuel system voltage (battery voltage). | 0-18.7 V
Normally, approximately 12.0 V |
| D20 | Sidestand switch (Option) | Displays that the switch is ON or OFF. | Stand retracted: ON
Stand extended: OFF |
| D30 | Ignition coil | When the "MODE" button is pressed, the ignition coil is actuated five times per second and the "WARNING" LED (orange) comes on.
• Connect an ignition checker. | Check that spark is generated, 5 times with the "MODE" button press. |
| D36 | Fuel injector | When the "MODE" button is pressed, the fuel injector is actuated five times per second and the "WARNING" LED (orange) comes on. | Check the operating sound of the fuel injector five times with "MODE" button press. |
| D52 | Headlight | When the "MODE" button is pressed, the headlight is actuated five times every 5 seconds and the engine trouble warning light comes on. (ON 2 seconds, OFF 3 seconds) | Check the headlight operating 5 times with the "MODE" button is pressed. |
| D54 | ISC (idle speed control) valve | When the the "MODE" button is pressed, the ISC (idle speed control) valve fully closes, and then it opens until it is at the standby opening position when the engine is started. This operation takes approximately 3 seconds until it is completed. | The ISC (idle speed control) valve unit vibrates when the ISC (idle speed control) valve operates. |
| D60 | E2PROM fault code display | Transmits the abnormal portion of the data in the E2PROM that has been detected as a fault code 44.
If multiple malfunctions have been detected, different codes are displayed at 2-second intervals, and this process is repeated. | 01 CO adjustment value is detected.
(00) Displays when there is no malfunction. |
| D61 | Malfunction history code display | Displays the codes of the history of the self-diagnosis malfunctions (i.e., a code of a malfunction that occurred once and which has been corrected).
If multiple malfunctions have been detected, different codes are displayed at 2-second intervals, and this process is repeated. | 12-61
(00) Displays when there is no malfunction. |
| D62 | Malfunction history code erasure | Displays the total number of codes that are being detected through self diagnosis and the fault codes in the past history.
Erases only the history codes when the "MODE" button is pressed. | 00-18
(00) Displays when there is no malfunction. |
<p>| D70 | Control number | Displays the program control number. | 00-254 |</p>
<table>
<thead>
<tr>
<th>LCD Display</th>
<th>Symptom</th>
<th>Probable cause of malfunction</th>
</tr>
</thead>
</table>
| Waiting for connection... | No signals are received from the ECU. | • Improper installed lead connector in the coupler.
• The main switch is OFF position.
• Malfunction in FI diagnostic tool.
• Malfunction in ECU. |
| ERROR 4 | Commands from the FI diagnostic tool are not accepted by the ECU. | • Turn the main switch to “OFF” once, and then turn it back to CO adjustment mode or diagnostic mode.
• Vehicle battery is insufficiently charged.
• Malfunction in FI diagnostic tool.
• Malfunction in ECU. |

TROUBLESHOOTING DETAILS
This section describes the countermeasures per fault code number displayed on the FI diagnostic tool. Check and service the items or components that are the probable cause of the malfunction following the order given.
After the check and service of the malfunctioned part has been completed, reset the FI diagnostic tool display according to the “Reinstatement method”.

Fault code No.:
Fault code number displayed on the FI diagnostic tool when the engine failed to work normally.
Refer to “Fault code table”.

Diagnostic code No.:
Diagnostic code number to be used when the diagnostic mode is operated. Refer to “DIAGNOSTIC MODE”.

(EA000009)
FUEL INJECTION SYSTEM

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Installed condition of sensor.</td>
<td>Check the installed area for looseness or pinching.</td>
<td>Reinstated by cranking the engine.</td>
</tr>
<tr>
<td>2</td>
<td>Connected condition of connector.</td>
<td>If there is a malfunction, repair it and connect it securely.</td>
<td>Crankshaft position sensor coupler Main wiring harness ECU coupler</td>
</tr>
<tr>
<td></td>
<td>Inspect the coupler for any pins that may have pulled out. Check that the coupler is connected securely.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: Set the main switch to OFF before connecting or disconnecting the connector.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Open or short circuit in wiring harness.</td>
<td>Repair or replace if there is an open or short circuit between the main wiring harnesses. Between sensor coupler and ECU coupler. white/red black/blue</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Defective crankshaft position sensor.</td>
<td>Replace if defective. Refer to “IGNITION SYSTEM” in chapter 8.</td>
<td></td>
</tr>
</tbody>
</table>
FUEL INJECTION SYSTEM

Fault code No. 13 Symptom
Intake air pressure sensor-open or short circuit detected.

Used diagnostic code No. D03 (intake air pressure sensor)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connected condition of connector</td>
<td>If there is a malfunction, repair it and connect it securely.</td>
<td>Reinstated by turning the main switch ON.</td>
</tr>
<tr>
<td></td>
<td>Inspect the coupler for any pins that may have pulled out.</td>
<td>Intake air pressure sensor coupler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check the locking condition of the coupler.</td>
<td>Main wiring harness ECU coupler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE:</td>
<td>Sub-wire harness coupler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set the main switch to OFF before connecting or disconnecting the connector.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Open or short circuit in wiring harness and/or sub lead.</td>
<td>Repair or replace if there is an open or short circuit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Between sensor coupler and ECU coupler</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>black/blue - black/blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pink/white - pink/white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>blue - blue</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Defective intake air pressure sensor.</td>
<td>Execute the diagnostic mode (code No. D03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace the throttle body.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not remove the sensor assembly (MAQS).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Connect the digital circuit tester to the intake air pressure sensor coupler as shown.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positive tester probe → pink/white ①</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative tester probe → black/blue ②</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Set the main switch to “ON”.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Measure the intake air pressure sensor output voltage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intake air pressure sensor output voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.9–4.1V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Is the intake air pressure sensor OK?</td>
<td></td>
</tr>
</tbody>
</table>
Fault code No. 14

Symptom: Intake air pressure sensor-hose system malfunction (clogged or detached hose).

Used diagnostic code No. D03 (intake air pressure sensor)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connected state of connector</td>
<td>Check the coupler for any pins that may have pulled out, Check that the coupler is connected securely. If there is a malfunction, repair it and connect it securely.</td>
<td>Reinstated by starting the engine and operating it at idle.</td>
</tr>
<tr>
<td></td>
<td>Intake air pressure sensor coupler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main wiring harness ECU coupler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-wire harness coupler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Defective intake air pressure sensor.</td>
<td>Execute the diagnostic mode (code No. D03) Replace the throttle body. NOTE: Do not remove the sensor assembly (MAQS). Refer to “Fault code No. 13”.</td>
<td>Reinstated by turning the main switch ON.</td>
</tr>
</tbody>
</table>

Fault code No. 15

Symptom: Throttle position sensor-open or short circuit detected.

Used diagnostic code No. D01 (throttle position sensor)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Installed condition of throttle position sensor.</td>
<td>Check the installed area for looseness or pinching. Check that it is installed in the specified position. Refer to “THROTTLE BODY AND FUEL INJECTOR”.</td>
<td>Reinstated by turning the main switch ON.</td>
</tr>
<tr>
<td>2</td>
<td>Connected condition of connector Inspect the coupler for any pins that may have pulled out. Check the locking condition of the coupler.</td>
<td>If there is a malfunction, repair it and connect it securely. Throttle position sensor coupler Main wiring harness ECU coupler Sub-wire harness coupler</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Open or short circuit in wiring harness and/or sub lead.</td>
<td>Repair or replace if there is an open or short circuit. Between sensor coupler and ECU coupler black/blue - black/blue yellow - yellow blue -blue</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Defective throttle position sensor.</td>
<td>Execute the diagnostic mode (code No. D01) Replace the throttle body. NOTE: Do not remove the sensor assembly (MAQS). Refer to “THROTTLE BODY AND FUEL INJECTOR”.</td>
<td>Reinstated by turning the main switch ON.</td>
</tr>
</tbody>
</table>
FUEL INJECTION SYSTEM

Fault code No. 16
Symptom: Stuck throttle position sensor detected.

- **Used diagnostic code:** No. D01 (throttle position sensor)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Installed condition of throttle position sensor.</td>
<td>Check the installed area for looseness or pinching. Check that it is installed in the specified position. Refer to "THROTTLE BODY AND FUEL INJECTOR ".</td>
<td>Reinstated by starting the engine, operating it at idle, and then racing it.</td>
</tr>
<tr>
<td>2</td>
<td>Defective throttle position sensor</td>
<td>Execute the diagnostic mode (code No. 01) Replace the throttle body. NOTE: Do not remove the sensor assembly (MAQS). Refer to "THROTTLE BODY AND FUEL INJECTOR ".</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>When fault code No. 15 has been detected</td>
<td>Refer to “Fault code No.15”.</td>
<td>Refer to “Fault code No. 15”.</td>
</tr>
</tbody>
</table>

Fault code No. 19
Symptom: Open circuit in the input line of ECU (blue/yellow lead) detected.

- **Used diagnostic code:** No. D20 (sidestand switch : option)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connected state of connector Main wiring harness ECU coupler (blue/yellow connector)</td>
<td>Execute the diagnostic mode (code No. D20) Check the coupler for any pins that may have pulled out. Check the locking condition of the coupler. If there is a malfunction, repair it and connect it securely.</td>
<td>Reinstated by reconnecting the wiring and retracting the sidestand.</td>
</tr>
<tr>
<td>2</td>
<td>Open or short circuit in wiring harness and/or sub lead.</td>
<td>Repair or replace if there is an open circuit. Between main switch coupler and ECU coupler. blue/yellow - blue/yellow Sidestand switch signal input line of main switch coupler. blue/green - blue/green</td>
<td></td>
</tr>
</tbody>
</table>
Fault code No. 21 Symptom: Coolant temperature sensor open or short circuit is detected.

Used diagnostic code No. D06 (coolant temperature sensor)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Installed condition of sensor</td>
<td>Check the installed area for looseness or pinching.</td>
<td>Reinstated by turning the main switch ON.</td>
</tr>
<tr>
<td>2</td>
<td>Connected condition of connector</td>
<td>If there is a malfunction, repair it and connect it securely. Coolant temperature sensor coupler Main wiring harness ECU coupler</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Open or short circuit in wiring harness</td>
<td>Repair or replace if there is an open or short circuit. Between sensor coupler and ECU coupler black/blue-black/blue green/red - green/red</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Defective coolant temperature sensor</td>
<td>Execute the diagnostic mode (code No.D06) Replace if defective. Refer to “COOLING SYSTEM” in chapter 8.</td>
<td></td>
</tr>
</tbody>
</table>
FUEL INJECTION SYSTEM

Fault code No. 22 Symptom
Intake temperature sensor open or short circuit is detected.

Used diagnostic code No. D05 (intake air temperature sensor)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Installed condition of sensor</td>
<td>Check the installed area for looseness or pinching.</td>
<td>Reinstated by turning the main switch ON.</td>
</tr>
<tr>
<td>2</td>
<td>Connected condition of connector</td>
<td>If there is a malfunction, repair it and connect it securely.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspect the coupler for any pins that may have pulled out.</td>
<td>Intake air temperature sensor coupler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check the locking condition of the coupler.</td>
<td>Main wiring harness ECU coupler</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-wire harness coupler</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Open or short circuit in wiring harness and/or sub lead.</td>
<td>Repair or replace if there is an open or short circuit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Between sensor coupler and ECU coupler</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>black/blue - black/blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>brown/white - brown/white</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Defective intake air temperature sensor.</td>
<td>Execute the diagnostic mode (code No. D05)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replace the throttle body.</td>
<td>NOTE: Do not remove the sensor assembly (MAQS).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Connect the digital circuit tester to the intake air temperature sensor terminal as shown.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Measure the intake air temperature sensor resistance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intake air temperature sensor resistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4~2.9kΩ at 20°C (68°F)</td>
<td></td>
</tr>
</tbody>
</table>

WARNING

- Handle the intake air temperature sensor with special care.
- Never subject the intake air temperature sensor to strong shocks. If the intake air temperature sensor is dropped, replace it.

3. Is the intake air temperature sensor OK?
FUEL INJECTION SYSTEM

<table>
<thead>
<tr>
<th>Fault code No.</th>
<th>symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>The vehicle has overturned.</td>
</tr>
</tbody>
</table>

Used diagnostic code No. D08 (lean angle cut-off switch)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The vehicle has overturned.</td>
<td>Raise the vehicle upright.</td>
<td>Reinstated by turning the main switch ON (however, the engine cannot be restarted unless the main switch is first turned OFF).</td>
</tr>
<tr>
<td>2</td>
<td>Installed condition of the lean angle cut-off switch</td>
<td>Check the installed area for looseness or pinching.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Connected condition of connector:</td>
<td>If there is a malfunction, repair it and connect it securely.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspect the coupler for any pins that may have pulled out.</td>
<td>Lean angle cut-off switch coupler</td>
<td>Main wiring harness ECU coupler</td>
</tr>
<tr>
<td></td>
<td>Check the locking condition of the coupler.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Defective lean angle cut-off switch</td>
<td>Execute the diagnostic mode (code No. D08) Replace if defective.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Remove the lean angle cut-off switch from the vehicle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Connect the lean angle cut-off switch coupler to the wire harness.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Connect the digital circuit tester to the lean angle cut-off switch terminals as shown.</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)

4. When turning the lean angle cut-off switch approximately 65°, the voltage reading change from 0.4 V to 4.4 V.

5. Is the lean angle cut-off switch OK?
FUEL INJECTION SYSTEM

Fault code No. 33

Symptom: Open circuit detected in the primary lead of the ignition coil.

Used diagnostic code No. D30

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connected condition of connector: Inspect the coupler for any pins that may have pulled out. Check the locking condition of the coupler.</td>
<td>If there is a malfunction, repair it and connect it securely. Ignition coil primary side coupler - orange Main wiring harness ECU coupler</td>
<td>Reinstated by starting the engine and operating it at idle.</td>
</tr>
<tr>
<td>2</td>
<td>Open or short circuit in lead.</td>
<td>Repair or replace if there is an open or short circuit. Between ignition coil coupler and ECU coupler/main harness orange - orange</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Defective ignition coil (test the primary and secondary coils for continuity).</td>
<td>Execute the diagnostic mode (code No. D30) Replace if defective. Refer to “IGNITION SYSTEM” in chapter 8.</td>
<td></td>
</tr>
</tbody>
</table>

Fault code No. 37

Symptom: Engine speed is high when the engine is idling.

Used diagnostic code No. D54 (ISC (idle speed control) valve)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Incorrect speed sensor signal</td>
<td>Check the speed sensor. Check the speed sensor leads. Check the speed sensor coupler.</td>
<td>Reinstated if the engine idle speed is within specification after starting the engine.</td>
</tr>
<tr>
<td>2</td>
<td>Throttle valve does not fully close</td>
<td>Check the throttle body. Refer to “THROTTLE BODY ASSEMBLY AND FUEL INJECTOR ASSEMBLY”. Check the throttle cables. Refer to “ADJUSTING THE THROTTLE CABLE FREE PLAY” in chapter 3.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ISC (idle speed control) valve stuck fully open</td>
<td>The ISC (idle speed control) valve is stuck fully open if it does not operate when the main switch is set to OFF. (Touch the ISC (idle speed control) valve unit with your hand and check if it is vibrating to confirm if the ISC (idle speed control) valve is operating.) NOTE: Do not remove the ISC (idle speed control) valve unit.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ISC (idle speed control) valve not moving correctly</td>
<td>Execute the diagnostic mode (code No. D54) After the ISC (idle speed control) valve is fully closed, it opens until it is at the standby opening position when the engine is started. This operation takes approximately 3 seconds until it is completed. Start the engine. If the error recurs, replace the throttle body assembly.</td>
<td></td>
</tr>
</tbody>
</table>
FUEL INJECTION SYSTEM

Fault code No. 39
Symptom: Fuel injector open or short circuit is detected.

Used diagnostic code No. D36 (fuel injector)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connected condition of connector
Inspect the coupler for any pins that may have pulled out.
Check the locking condition of the coupler.</td>
<td>If there is a malfunction, repair it and connect it securely.
Fuel injector coupler - orange/black
Main wiring harness ECU coupler</td>
<td>Reinstated by starting the engine.</td>
</tr>
<tr>
<td>2</td>
<td>Open or short circuit in lead wire.</td>
<td>Repair or replace if there is an open or short circuit.
Between fuel injector coupler and ECU coupler/main harness
orange/black - orange/black</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Defective fuel injector</td>
<td>Execute the diagnostic mode (code No. D36)
Replace if defective.</td>
<td></td>
</tr>
</tbody>
</table>

Fault code No. 41
Symptom: Lean angle cut-off switch open or short circuit is detected.

Used diagnostic code No. D08 (lean angle cut-off switch)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connected condition of connector
Inspect the coupler for any pins that may have pulled out.
Check the locking condition of the coupler.</td>
<td>If there is a malfunction, repair it and connect it securely.
Lean angle cut-off switch coupler
Main wiring harness ECU coupler</td>
<td>Reinstated by turning the main switch ON.</td>
</tr>
<tr>
<td>2</td>
<td>Open or short circuit in wiring harness.</td>
<td>Repair or replace if there is an open or short circuit.
Between switch coupler and ECU coupler
black/blue - black/blue
yellow/green - yellow/green
blue - blue</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Defective lean angle cut-off switch</td>
<td>Execute the diagnostic mode (code No. D08)
Replace if defective.
Refer to Fault code No. 30.</td>
<td></td>
</tr>
</tbody>
</table>
FUEL INJECTION SYSTEM

Fault code No. 42
Symptom: No normal signals are received from the speed sensor.

Used diagnostic code No. D07 (speed sensor)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
</table>
| 1 | Connected condition of speedometer connector
 Inspect the coupler for any pins that may have pulled out.
 Check the locking condition of the coupler. | If there is a malfunction, repair it and connect it securely.
 Speedometer coupler
 Main wiring harness ECU coupler | Reinstated by inputting the vehicle speed signals by turning the front wheel. |
| 2 | Open or short circuit in speedometer lead. | Repair or replace if there is an open or short circuit.
 Between speedometer coupler and ECU coupler
 white - white
 black/blue - black/blue | |
| 3 | Breakage speedometer cable or speedometer gear unit. | Execute the diagnostic mode (code No. D07)
 Checking the speedometer cable breakage and loose connection.
 Checking the movement of the speedometer gear unit (1).
 Checking the breakage of the speedometer clutch projections (6) and speedometer gear unit slots (⑥). | |
| 4 | Defective speed sensor. | Execute the diagnostic mode (code No. D07)
 Replace the meter assembly. | |

![Diagram of speedometer system](image)
<table>
<thead>
<tr>
<th>Fault code No.</th>
<th>43</th>
<th>Symptom</th>
<th>Power supply to the fuel injector, fuel pump and ignition coil are not normal.</th>
<th>Used diagnostic code No. D09 (fuel system voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>Inspection operation item and probable cause</td>
<td>Operation item and countermeasure</td>
<td>Reinstatement method</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Connected condition of connector</td>
<td>If there is a malfunction, repair it and connect it securely. ECU coupler</td>
<td>Reinstated by starting the engine and operating it at idle.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Faulty battery</td>
<td>Replace or charge the battery. Refer to “CHECKING AND CHARGING THE BATTERY” in chapter 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Open or short circuit in wiring harness.</td>
<td>Execute the diagnostic mode (code No. D09) NOTE: When the leads are disconnected, the voltage check by the code No. D09 is impossible. Repair or replace if there is an open or short circuit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Between battery and main switch red-red</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Between main switch and handlebar switch (engine stop switch) brown-brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Between handlebar switch (engine stop switch) and ECU red/white-red/black</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fault code No.</th>
<th>44</th>
<th>Symptom</th>
<th>Error is detected while reading from or writing on EEROM (code register key code and throttle valve fully closed notification valve).</th>
<th>Used diagnostic code No. D60 (EEPROM improper cylinder indication)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>Inspection operation item and probable cause</td>
<td>Operation item and countermeasure</td>
<td>Reinstatement method</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Malfunction in ECU</td>
<td>Execute the diagnostic mode (code No. D60) • 01 is displayed on meter. Readjust the CO of the displayed cylinder. Refer to “ADJUSTING THE EXHAUST GAS VOLUME” in chapter 3. Replace ECU if defective.</td>
<td>Reinstated by turning the main switch ON.</td>
<td></td>
</tr>
</tbody>
</table>
FUEL INJECTION SYSTEM

Fault code No. 46
Symptom: Power supply to FI system is not normal. (red lead)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connected condition of connector</td>
<td>If there is a malfunction, repair it and connect it securely. ECU coupler</td>
<td>Reinstated by starting the engine and operating it at idle.</td>
</tr>
<tr>
<td>2</td>
<td>Faulty battery</td>
<td>Replace or charge the battery. Refer to “CHECKING AND CHARGING THE BATTERY” in chapter 3.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Malfunction in rectifier/ regulator</td>
<td>Replace if defective. Refer to “CHARGING SYSTEM” in chapter 8.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Open or short circuit in wiring harness.</td>
<td>Repair or replace if there is an open or short circuit. Between battery and ECU red-red</td>
<td></td>
</tr>
</tbody>
</table>

Fault code No. 50
Symptom: Faulty ECU memory. (when this malfunction is detected in the ECU, the fault code number might not appear on the meter.)

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection operation item and probable cause</th>
<th>Operation item and countermeasure</th>
<th>Reinstatement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Malfunction in ECU</td>
<td>Replace the ECU.</td>
<td>Reinstated by turning the main switch ON.</td>
</tr>
</tbody>
</table>
Fault Code No. 61 Symptom

ISC (Idle Speed Control) valve open or short circuit is detected.

Used Diagnostic Code No.--

<table>
<thead>
<tr>
<th>Order</th>
<th>Inspection Operation Item and Probable Cause</th>
<th>Operation Item and Countermeasure</th>
<th>Reinstatement Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connected condition of connector</td>
<td></td>
<td>Reinstated by setting the main switch to ON. The ISC (Idle Speed Control) valve fully closes, and then it opens until it is at the standby opening position when the engine is started.</td>
</tr>
<tr>
<td></td>
<td>Inspect the coupler for any pins that may have pulled out. Check the locking condition of the coupler.</td>
<td>If there is a malfunction, repair it and connect it securely. ISC (Idle Speed Control) valve coupler Main wiring harness ECU coupler</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Open or short circuit in lead.</td>
<td>Repair or replace if there is an open or short circuit. Between ISC (Idle Speed Control) valve and ECU coupler/main harness pink-pink green/yellow-green/yellow gray - gray sky blue-sky blue</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Detective ISC (Idle Speed Control) Valve</td>
<td>Execute diagnostic mode (code No.D54) Replace the throttle body. NOTE: Do not remove the ISC (Idle Speed Control) valve. Refer to “THROTTLE BODY AND FUEL INJECTOR.”</td>
<td></td>
</tr>
</tbody>
</table>
Removing the throttle body
Side cover (left and right)
Single seat/Trunk
Air filter assembly

1. Throttle body clamp screw
2. MAQS (modulated air quantity sensor) coupler
3. ISC (idle speed control) valve coupler
4. Throttle cable
5. Throttle body
6. Sub-wire harness

Removal procedure:
- Remove the parts in the order listed.
- Refer to "COVER AND PANEL" in chapter 3.
- Refer to "ENGINE REMOVAL" in chapter 5.
- Lossen.
- Disconnect.

For installation, reverse the removal procedure.
Removing the fuel injector and fuel hose

- **Footrest board**
- **Fuel pump coupler**
- **Fuel hose connector cover**
- **Fuel hose connector**
- **Fuel hose holder(to frame)**
- **Fuel hose holder(to intake manifold)**
- **Clamp**
- **Fuel injector coupler**
- **Fuel injector**

Order

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fuel pump coupler</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Fuel hose connector cover</td>
<td>1</td>
<td>Refer to "COVER AND PANEL" in chapter 3.</td>
</tr>
<tr>
<td>3</td>
<td>Fuel hose connector</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>4</td>
<td>Fuel hose holder(to frame)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fuel hose holder(to intake manifold)</td>
<td>1</td>
<td>Open lock.</td>
</tr>
<tr>
<td>6</td>
<td>Clamp</td>
<td>1</td>
<td>Disconnect.</td>
</tr>
<tr>
<td>7</td>
<td>Fuel injector coupler</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fuel injector</td>
<td>1</td>
<td>For installation, reverse the removal pro-</td>
</tr>
</tbody>
</table>

Remarks

- For installation, reverse the removal procedure.
FUEL TANK

Order	**Job/Part**	**Q'ty**	**Remarks**
Removing the fuel tank	Fuel hose	1	Remove the parts in the order listed. Refer to "FUEL INJECTOR AND FUEL HOSE".
Fuel tank	1	Place the scooter on a suitable stand. Refer to "REMOVING THE FUEL HOSE".	
Fuel pump	1	For installation, reverse the removal procedure. Refer to "REMOVING THE FUEL PUMP" and "INSTALLING THE FUEL PUMP".	

NOTE
THROTTLE BODY AND FUEL INJECTOR

REMOVING THE FUEL HOSE
1. Extract the fuel in the fuel tank through the fuel tank filler hole with a pump.
2. Remove:
 - fuel hose connector cover ①
3. Disconnect:
 - fuel hose ②

CAUTION:
- Be sure to disconnect the fuel hose by hand. Do not forcefully disconnect the hose with tools.
- Although the fuel has been removed from the fuel tank, be careful when removing the fuel hose, since there may be fuel remaining in it.
- Do not disconnect the fuel hose from the fuel hose connector. Disconnect the connector from the fuel pump.

NOTE: Before removing the hose, place a few rags in the area under where it will be removed.

3. Remove:
 - fuel tank

REMOVING THE FUEL PUMP
1. Disconnect:
 - fuel pump coupler
 - fuel hose
2. Remove:
 - fuel pump

CAUTION:
- Do not drop the fuel pump or give it a strong shock.
- Do not touch the base section of the fuel sender.

The fuel pump should not be disassembled.
CHECKING THE FUEL INJECTOR
1. Check:
 • fuel injector
 Damage → Replace.

CHECKING THE THROTTLE BODY
1. Check:
 • throttle body
 Cracks/damage → Replace the throttle body.
2. Check:
 • butterfly valve
 Damage/scratches/wear → Replace.

CAUTION:
- Do not adjust the stop screw ①
- Do not clean the throttle body using carburetor cleaner or compressed air.
- When replace the throttle body, the main switch is operated three times turn ON and OFF position.
 (ON position : 3 seconds more, OFF position : 3 seconds more). And then, start the engine and keep idling at 10 minutes more.
THROTTLE BODY AND FUEL INJECTOR

INSTALLING THE FUEL PUMP
1. Install:
 - fuel pump
 - 4Nm (0.4 m•kg, 2.9 ft•lb)

NOTE:
- Do not damage the installation surfaces of the fuel tank when installing the fuel pump.
- Always use a new fuel pump gasket.
- Align the projection @ on the fuel pump with the alignment mark b on the fuel tank.
- Tighten the fuel pump bolts in the proper tightening sequence as shown and torque them in two stages.

A Forward

INSTALLING THE FUEL HOSE
1. Install:
 - fuel hose
 - fuel hose connector cover

CAUTION:
Be sure to connect the fuel hose securely and install the fuel hose connector cover in the correct position, otherwise the fuel hose will not be properly installed.

NOTE:
- Install the fuel hose connector securely onto the fuel tank until a distinct “click” is heard, and then make sure that it does not come loose.
- After installing the fuel hose connector cover ①, make sure that it is installed securely.
CHECKING THE FUEL PUMP AND PRESSURE REGULATOR OPERATION

1. Check:
 • pressure regulator operation

a. Remove the footrest board.
 Refer to “COVER AND PANEL” in chapter 3.

b. Remove the fuel hose connector cover (1) and disconnect the fuel hose (2) from the fuel pump.

CAUTION:
Although the fuel has been removed from the fuel tank, be careful when removing the fuel hose, since there may be fuel remaining in it.

NOTE:
Before removing the hose, place a few rags in the area under where it will be removed.

c. Connect the pressure gauge (3) and adapter (4) onto the fuel hose.

d. Start the engine.

e. Measure the fuel pressure.

<table>
<thead>
<tr>
<th>Fuel pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>246 ~ 254 kPa</td>
</tr>
<tr>
<td>(2.46 ~ 2.54 kg/cm², 35.0 ~ 36.1 psi)</td>
</tr>
</tbody>
</table>

Faulty → Replace the fuel pump.

CHECKING THE THROTTLE POSITION SENSOR

1. Check:
 • throttle position sensor

a. Connect the digital circuit tester to the terminals of the throttle position sensor.
THROTTLE BODY AND FUEL INJECTOR

Positive tester probe → blue terminal ①
Negative tester probe → black/blue terminal ②

Digital circuit tester 90890-03174

b. Measure the throttle position sensor voltage.
 Out of specification → Replace or repair the wire harness.

Throttle position sensor voltage
5V
(blue-black/blue)

c. Connect the digital circuit tester to the terminals of the throttle position sensor.

Positive tester probed →
 yellow terminal ③
Negative tester probe →
 black/blue terminal ②
d. While slowly opening the throttle, check that the throttle position sensor voltage is increased.
 Voltage does not change or it changes abruptly → Replace the throttle body.
 Out of specification (closed position) → Replace the throttle body.

Throttle position sensor voltage
(closed position)
0.63 ~ 0.73 V
(yellow-black/blue)
CHECKING THE ISC (IDLE SPEED CONTROL) VALVE

NOTE: Do not remove the ISC (idle speed control) valve unit completely from the throttle body assembly.

1. Check:
 - ISC (idle speed control) valve

 a. Disconnect the ISC (idle speed control) valve coupler from the ISC (idle speed control) valve.
 b. Connect the digital circuit tester to the terminals of the ISC (idle speed control) valve.

 Positive tester probe → pink terminal
 Negative tester probe → green/yellow terminal

 Positive tester probe → gray terminal
 Negative tester probe → sky blue terminal

 Digital circuit tester 90890-03174

 c. Measure the ISC (idle speed control) valve resistance.
 Out of specification → Replace the throttle body.

 ISC (idle speed control) valve resistance
 18 ~ 22 Ω at 20°C(68°F)
AIR INDUCTION SYSTEM

AIR INJECTION
The air induction system burns unburned exhaust gases by injecting fresh air (secondary air) into the exhaust pipe reducing the emission of hydrocarbons.
When there is negative pressure at the exhaust port, the reed valve opens, allowing secondary air to flow into the exhaust port. The required temperature for burning the unburned exhaust gases is approximately 600 to 700 °C (1,112 to 1,292 °F).

AIR CUT-OFF VALVE
The air cut-off valve prevents air backflow from the exhaust pipe to the air filter.
- A From the air filter
- B To the exhaust pipe ass'y
AIR INDUCTION SYSTEM DIAGRAMS

1. Air induction system hose
2. Air filter case
3. Air induction system hose (air filter case to air cut-off valve)
4. Air cut-off valve
5. Air induction system hose (air cut-off valve to exhaust pipe)
Air Induction System

Air Cut-Off Valve and Air Filter Case

- **Removal Procedure**
 - **Order**: 1
 - **Job/Part**: Hose (to air filter case)
 - **Q'ty**: 1
 - **Remarks**: Remove the parts in the order listed.
 - **Order**: 2
 - **Job/Part**: Air filter case
 - **Q'ty**: 1
 - **Remarks**: Refer to "Cover and Panel" in chapter 3.
 - **Order**: 3
 - **Job/Part**: Hose (air cut-off valve to air filter case)
 - **Q'ty**: 1
 - **Remarks**: For installation, reverse the removal procedure.
 - **Order**: 4
 - **Job/Part**: Hose (air cut-off valve assembly to exhaust pipe)
 - **Q'ty**: 1
 - **Order**: 5
 - **Job/Part**: Air cut-off valve
 - **Q'ty**: 1

Note: The diagram illustrates the components and their connections within the air induction system.
CHECKING THE AIR INDUCTION SYSTEM

1. Check:
 • hoses
 Loose connection → Connect properly.
 Cracks/damage → Replace.

2. Check:
 • reed valve
 • reed valve stopper
 • reed valve seat
 Cracks/damage → Replace the reed valve.

3. Check:
 • air cut-off valve
 Cracks/damage → Replace.
CHAPTER 8
ELECTRICAL

ELECTRICAL COMPONENTS .. 8-1
WIRING DIAGRAM .. 8-2
CHECKING SWITCH CONTINUITY ... 8-4
CHECKING THE SWITCHES ... 8-5
CHECKING THE BULBS AND BULB SOCKETS 8-6
 TYPES OF BULBS .. 8-6
 CHECKING THE CONDITION OF THE BULBS 8-7
 CHECKING THE CONDITION OF THE BULB SOCKETS 8-8
IGNITION SYSTEM ... 8-9
 CIRCUIT DIAGRAM .. 8-9
 TROUBLESHOOTING .. 8-10
ELECTRIC STARTING SYSTEM .. 8-14
 CIRCUIT DIAGRAM .. 8-14
 STARTING CIRCUIT CUT-OFF SYSTEM OPERATION 8-15
 TROUBLESHOOTING .. 8-16
 STARTER MOTOR .. 8-20
 CHECKING THE STARTER MOTOR 8-21
 ASSEMBLING THE STARTER MOTOR 8-23
CHARGING SYSTEM ... 8-24
 CIRCUIT DIAGRAM .. 8-24
 TROUBLESHOOTING .. 8-25
LIGHTING SYSTEM .. 8-27
 CIRCUIT DIAGRAM .. 8-27
 TROUBLESHOOTING .. 8-28
 CHECKING THE LIGHTING SYSTEM 8-30
SIGNALLING SYSTEM .. 8-34
 CIRCUIT DIAGRAM .. 8-34
 TROUBLESHOOTING .. 8-35
 CHECKING THE SIGNALING SYSTEM 8-36
COOLING SYSTEM ... 8-42
 TROUBLESHOOTING .. 8-43
 CHECKING THE COOLING SYSTEM 8-45
ELECTRICAL COMPONENTS

1. Main switch
2. Front brake light switch
3. Rectifier/regulator
4. Rear brake light switch
5. Battery
6. Main fuse
7. ECU
8. Coolant temperature sensor
9. Ignition coil
10. Spark plug cap
11. Fuel pump
12. Starter relay
13. Horn
14. Turn signal relay
15. Starting circuit cut-off relay
16. Stator coil
17. Wire harness
AC magneto
Rectifier/regulator
Main fuse
Battery
Starter relay
Starter motor
Start switch
Engine stop switch
ECU
Main switch
Intake air pressure sensor
Intake air temperature sensor
Throttle position sensor
Lean angle cut-off switch
Coolant temperature sensor
Ignition coil
Spark plug
Fuel injector
Fuel pump
ISC(idle speed control) valve
Horn switch
Dimmer switch
Turn signal switch
Headlight
Tail/brake light
Front brake light switch
Rear brake light switch
Horn
Turn signal relay
Front turn signal light(left)
Front turn signal light(right)
Fuel level meter
High beam indicator light
Speedometer light
Engine trouble warning light
Coolant temperature indicator light
Speed sensor
Turn signal indicator light
FI diagnostic tool(optional)
Sidestand switch (optional)
Rear turn signal light(left)
Rear turn signal light(right)
License plate light
Starting circuit cut-off relay
Connector

COLOR CODE
B Black
Br Brown
Ch Chocolate
Dg Dark green
G Green
Gy Gray
L Blue
Lg Light green
Or Orange
P Pink
R Red
Sb Sky blue
W White
Y Yellow
B/L Black/Blue
B/G Black/Green
B/R Black/Red
B/W Black/White
B/Y Black/Yellow
G/R Green/Red
G/Y Green/Yellow
L/B Blue/Black
L/G Blue/Green
L/W Blue/White
L/Y Blue/Yellow
G/R Green/Red
L/B Blue/Black
W/L White/Blue
W/R White/Red
Y/G Yellow/Green
Br/W Brown/White
Br/L...... Brown/Blue
CHECKING SWITCH CONTINUITY

Check each switch for continuity with the pocket tester. If the continuity reading is incorrect, check the wiring connections and if necessary, replace the switch.

CAUTION:
Never insert the tester probes into the coupler terminal slots. Always insert the probes from the opposite end of the coupler, taking care not to loosen or damage the leads.

Pocket tester
90890-03132 (YU-03112-C)

NOTE:
- Before checking for continuity, set the pocket tester to “0” and to the “Ω x 1” range.
- When checking for continuity, switch back and forth between the switch positions a few times.

The terminal connections for switches (e.g., main switch, engine stop switch) are shown in an illustration similar to the one on the left. The switch positions (a) are shown in the far left column and the switch lead colors (b) are shown in the top row in the switch illustration.

NOTE:
“O-O” indicates a continuity of electricity between switch terminals (i.e., a closed circuit at the respective switch position).

The example illustration on the left shows that:
There is continuity between black and black/white when the switch is set to “OFF”.
There is continuity between red and brown when the switch is set to “ON”.

The terminal connections for switches (e.g., main switch, engine stop switch) are shown in an illustration similar to the one on the left. The switch positions (a) are shown in the far left column and the switch lead colors (b) are shown in the top row in the switch illustration.

NOTE:
“O-O” indicates a continuity of electricity between switch terminals (i.e., a closed circuit at the respective switch position).

The example illustration on the left shows that:
There is continuity between black and black/white when the switch is set to “OFF”.
There is continuity between red and brown when the switch is set to “ON”.

The terminal connections for switches (e.g., main switch, engine stop switch) are shown in an illustration similar to the one on the left. The switch positions (a) are shown in the far left column and the switch lead colors (b) are shown in the top row in the switch illustration.

NOTE:
“O-O” indicates a continuity of electricity between switch terminals (i.e., a closed circuit at the respective switch position).

The example illustration on the left shows that:
There is continuity between black and black/white when the switch is set to “OFF”.
There is continuity between red and brown when the switch is set to “ON”.

The terminal connections for switches (e.g., main switch, engine stop switch) are shown in an illustration similar to the one on the left. The switch positions (a) are shown in the far left column and the switch lead colors (b) are shown in the top row in the switch illustration.

NOTE:
“O-O” indicates a continuity of electricity between switch terminals (i.e., a closed circuit at the respective switch position).

The example illustration on the left shows that:
There is continuity between black and black/white when the switch is set to “OFF”.
There is continuity between red and brown when the switch is set to “ON”.

The terminal connections for switches (e.g., main switch, engine stop switch) are shown in an illustration similar to the one on the left. The switch positions (a) are shown in the far left column and the switch lead colors (b) are shown in the top row in the switch illustration.

NOTE:
“O-O” indicates a continuity of electricity between switch terminals (i.e., a closed circuit at the respective switch position).

The example illustration on the left shows that:
There is continuity between black and black/white when the switch is set to “OFF”.
There is continuity between red and brown when the switch is set to “ON”.

The terminal connections for switches (e.g., main switch, engine stop switch) are shown in an illustration similar to the one on the left. The switch positions (a) are shown in the far left column and the switch lead colors (b) are shown in the top row in the switch illustration.

NOTE:
“O-O” indicates a continuity of electricity between switch terminals (i.e., a closed circuit at the respective switch position).

The example illustration on the left shows that:
There is continuity between black and black/white when the switch is set to “OFF”.
There is continuity between red and brown when the switch is set to “ON”.

The terminal connections for switches (e.g., main switch, engine stop switch) are shown in an illustration similar to the one on the left. The switch positions (a) are shown in the far left column and the switch lead colors (b) are shown in the top row in the switch illustration.

NOTE:
“O-O” indicates a continuity of electricity between switch terminals (i.e., a closed circuit at the respective switch position).

The example illustration on the left shows that:
There is continuity between black and black/white when the switch is set to “OFF”.
There is continuity between red and brown when the switch is set to “ON”.

The terminal connections for switches (e.g., main switch, engine stop switch) are shown in an illustration similar to the one on the left. The switch positions (a) are shown in the far left column and the switch lead colors (b) are shown in the top row in the switch illustration.

NOTE:
“O-O” indicates a continuity of electricity between switch terminals (i.e., a closed circuit at the respective switch position).

The example illustration on the left shows that:
There is continuity between black and black/white when the switch is set to “OFF”.
There is continuity between red and brown when the switch is set to “ON”.

The terminal connections for switches (e.g., main switch, engine stop switch) are shown in an illustration similar to the one on the left. The switch positions (a) are shown in the far left column and the switch lead colors (b) are shown in the top row in the switch illustration.
CHECKING THE SWITCHES

Check each switch for damage or wear, proper connections, and also for continuity between the terminals. Refer to "CHECKING SWITCH CONTINUITY".

- Damage/wear → Repair or replace.
- Improperly connected → Properly connect.
- Incorrect continuity reading → Replace the switch.

1. Rear brake light switch
2. Dimmer switch
3. Horn switch
4. Turn signal switch
5. Main fuse
6. Start switch
7. Engine stop switch
8. Main switch
9. Front brake light switch
10. Sidestand switch (optional)
CHECKING THE BULBS AND BULB SOCKETS

CHECKING THE BULBS AND BULB SOCKETS

Check each bulb and bulb socket for damage or wear, proper connections, and also for continuity between the terminals.

- Damage/wear → Repair or replace the bulb, bulb socket or both.
- Improperly connected → Properly connect.
- No continuity → Repair or replace the bulb, bulb socket or both.

TYPES OF BULBS

The bulbs used on this scooter are shown in the illustration on the left.

- Bulbs A and B are used for the headlights and usually use a bulb holder that must be detached before removing the bulb. The majority of these types of bulbs can be removed from their respective socket by turning them counterclockwise.

- Bulbs C is used for turn signal and tail/brake lights and can be removed from the socket by pushing and turning the bulb counterclockwise.

- Bulbs D and E are used for meter and indicator lights and can be removed from their respective socket by carefully pulling them out.
CHECKING THE BULBS AND BULB SOCKETS

CHECKING THE CONDITION OF THE BULBS

The following procedure applies to all of the bulbs.

1. Remove:
 - bulb

WARNING

Since the headlight bulb gets extremely hot, keep flammable products and your hands away from the bulb until it has cooled down.

CAUTION:

- Be sure to hold the socket firmly when removing the bulb. Never pull the lead, otherwise it may be pulled out of the terminal in the coupler.
- Avoid touching the glass part of the headlight bulb to keep it free from oil, otherwise the transparency of the glass, the life of the bulb, and the luminous flux will be adversely affected. If the headlight bulb gets soiled, thoroughly clean it with a cloth moistened with alcohol or lacquer thinner.

2. Check:
 - bulb (for continuity)
 (with the pocket tester)
 No continuity → Replace.

Pocket tester

90890-03112 (YU-03112-C)

NOTE:

Before checking for continuity, set the pocket tester to "0" and to the "Ω × 1" range.

a. Connect the positive tester probe to terminal ① and the negative tester probe to terminal ②, and check the continuity.

b. Connect the positive tester probe to terminal ① and the negative tester probe to terminal ③, and check the continuity.

c. If either of the readings indicate no continuity, replace the bulb.

CHECKING THE BULBS AND BULB SOCKETS

CHECKING THE CONDITION OF THE BULB SOCKETS
The following procedure applies to all of the bulb sockets.
1. Check:
 - bulb socket (for continuity)
 (with the pocket tester)
 No continuity → Replace.

 Pocket tester
 90890-03112 (YU-03112-C)

NOTE:
Check each bulb socket for continuity in the same manner as described in the bulb section; however, note the following.

a. Install a good bulb into the bulb socket.
b. Connect the pocket tester probes to the respective leads of the bulb socket.
c. Check the bulb socket for continuity. If any of the readings indicate no continuity, replace the bulb socket.

8-8
IGNITION SYSTEM
CIRCUIT DIAGRAM

1. Crankshaft position sensor
2. Main fuse
3. Battery
4. Engine stop switch
5. ECU
6. Main switch
7. Lean angle cut-off switch
8. Ignition coil
9. Spark plug
10. Sidestand switch (optional)
IGNITION SYSTEM

TROUBLESHOOTING

The ignition system fails to operate (no spark or intermittent spark).

Check:
1. main fuse
2. battery
3. spark plug
4. ignition spark gap
5. spark plug cap resistance
6. ignition coil resistance
7. crankshaft position sensor resistance
8. main switch
9. engine stop switch
10. sidestand switch (optional)
11. lean angle cut-off switch
12. wiring connections (of the entire ignition system)

NOTE:
- Before troubleshooting, remove the following part(s):
 1. Battery cover
 2. Front cover
 3. Side cover (right)
- Troubleshoot with the following special tool(s).

Ignition checker
- 90890-06754
- YM-34487

Pocket tester
- 90890-03112
- YU-03112-C

1. Main Fuse

- Check the fuse for continuity. Refer to “CHECKING THE FUSE” in chapter 3.
- Is the fuse OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replace the fuse.</td>
</tr>
</tbody>
</table>

2. Battery

- Check the condition of the battery. Refer to “CHECKING AND CHARGING THE BATTERY” in chapter 3.

Minimum open-circuit voltage
- 12.8 V or more at 20°C (68°F)
- Is the battery OK?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clean the battery terminals. Recharge or replace the battery.</td>
</tr>
</tbody>
</table>

3. Spark plug

- Check the condition of the spark plug.
- Check the spark plug type.
- Measure the spark plug gap. Refer to “CHECKING THE SPARK PLUG” in chapter 3.

Standard spark plug
- CR7E (NGK)
- Spark plug gap: 0.7 ~ 0.8 mm (0.028 ~ 0.031 in)

- Is the spark plug in good condition, is it of the correct type, and is its gap within specification?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Re-gap or replace the spark plug.</td>
</tr>
</tbody>
</table>
4. Ignition spark gap
- Disconnect the spark plug cap from the spark plug.
- Connect the ignition checker ① as shown.
- Set the main switch to “ON”.
- Measure the ignition spark gap ③.
- Crank the engine by pushing the starter switch and gradually increase the spark gap until a misfire occurs.

Minimum ignition spark gap
6 mm (0.24 in)

- Is there a spark and is the spark gap within specification?

 NO YES

The ignition system is OK.

5. Spark plug cap resistance
- Remove the spark plug cap from the spark plug lead.
- Connect the pocket tester (Ω x1k” range) to the spark plug cap as shown.
- Measure the spark plug cap resistance.

Spark plug cap resistance
4–6 kΩ at 20°C (68°F)

- Is the spark plug cap OK?

 YES NO

Replace the spark plug cap.

6. Ignition coil resistance
- Disconnect the ignition coil connectors from the ignition coil terminals.
- Connect the pocket tester (Ω x1) to the ignition coil as shown.

Positive tester probe → orange ①
Negative tester probe → red/black ②
IGNITION SYSTEM

7. Crankshaft position sensor resistance
 - Disconnect the crankshaft position sensor coupler from the wire harness.
 - Connect the pocket tester (Ω x100) to the crankshaft position sensor coupler as shown.

Positive tester probe g white/red ①
Negative tester probe g white/blue ②

- Measure the crankshaft position sensor resistance.

Crankshaft position sensor resistance
248 ~ 372Ω at 20°C(68°F)
(between white/red and white/blue)

- Is the crankshaft position sensor OK?

8. Main switch
 - Check the main switch for continuity. Refer to “CHECKING THE SWITCHES”.
 - Is the main switch OK?

Replace the main switch.
9. Engine stop switch
- Check the engine stop switch for continuity. Refer to "CHECKING THE SWITCHES".
- Is the engine stop switch OK?

YES

NO

Replace the right handlebar switch.

10. Sidestand switch (optional)
- Check the sidestand switch for continuity. Refer to "CHECKING THE SWITCHES".
- Is the sidestand switch OK?

YES

NO

Replace the sidestand switch.

11. Lean angle cut-off switch
- Remove the lean angle cut-off switch.
- Connect the pocket tester (Ω x 1) to the lean angle cut-off switch terminals as shown.

Positive tester probe → blue
Negative tester probe → yellow/green

Lean angle cut-off switch voltage
Less than 65° → 0.4~1.4V
More than 65° → 3.7~4.4V

12. Wiring
- Check the entire ignition system’s wiring. Refer to "CIRCUIT DIAGRAM".
- Is the ignition system’s wiring properly connected and without defects?

YES

NO

Replace the ECU.

Properly connect or repair the ignition system’s wiring.
ELECTRIC STARTING SYSTEM

CIRCUIT DIAGRAM

- Main fuse
- Battery
- Starter relay
- Starter motor
- Start switch
- Engine stop switch
- Main switch
- Front brake light switch
- Rear brake light switch
- Sidestand switch (optional)
- Starting circuit cut-off relay
If the engine stop switch is set to “O” and the main switch is set to “ON” (both switches are closed), the starter motor can only operate if at least one of the following conditions is met:

- The brake lever (front or rear) is pulled to the handlebar (the brake light switch is closed) and the sidestand (optional) is up (the sidestand switch (optional) is closed).

1. Battery
2. Main fuse
3. Main switch
4. Front brake light switch
5. Rear brake light switch
6. Engine stop switch
7. Starting circuit cut-off relay
8. Sidestand switch (optional)
9. Start switch
10. Starter relay
11. Starter motor
TROUBLESHOOTING

The starter motor fails to turn.

Check:
1. main fuse
2. battery
3. starter motor
4. starting circuit cut-off relay
5. starter relay
6. main switch
7. brake light switch (front and rear)
8. engine stop switch
9. sidestand switch (optional)
10. start switch
11. wiring connections
 (of the entire starting system)

NOTE:
- Before troubleshooting, remove the following part(s):
 1. battery cover/front cover
 2. side cover (left and right)
 3. front fork upper cover
 4. front fork cover (left and right)
 5. leg shield
 6. air filter assembly
- Troubleshoot with the following special tool(s).

Pocket tester
90890-03112 (YU-03112-C)

1. Main Fuse
 - Check the fuse for continuity.
 Refer to “CHECKING THE FUSE” in chapter 3.
 - Is the fuse OK?

 YES NO
 Replace the fuse.

2. Battery
 - Check the condition of the battery.
 Refer to “CHECKING AND CHARGING THE BATTERY” in chapter 3.

 Minimum open-circuit voltage
 12.8 V or more at 20°C (68°F)

 - Is the battery OK?

 YES NO
 • Clean the battery terminals.
 • Recharge or replace the battery.
3. Starter motor
• Connect the positive battery terminal ① and starter motor lead ② with a jumper lead ③.

WARNING
• A wire that is used as a jumper lead must have at least the same capacity or more as that of the battery lead, otherwise the jumper lead may burn.
• This check is likely to produce sparks, therefore make sure nothing flammable is in the vicinity.

• Does the starter motor turn?
 - YES
 - NO

 Repair or replace the starter motor.

4. Starting circuit cut-off relay
• Remove the starting circuit cut-off relay.
• Connect the pocket tester (Ω x1) and battery (12 V) to the starting circuit cut-off relay coupler as shown.

Positive battery terminal → red/white ①
Negative battery terminal → light green ②
Positive tester probe → green/yellow ③
Negative tester probe → green/yellow ④

• Does the starting circuit cut-off relay have continuity between green/yellow and green/yellow?
 - YES
 - NO

 Replace the starting circuit cut-off relay.
5. Starter relay
- Remove the starter relay.
- Connect the pocket tester (Ω x1) and battery (12 V) to the starter relay coupler as shown.

\[\text{Positive battery terminal \(\rightarrow\) green/yellow}^{\text{1}}\]
\[\text{Negative battery terminal \(\rightarrow\) blue/white}^{\text{2}}\]
\[\text{Positive tester probe \(\rightarrow\) red}^{\text{3}}\]
\[\text{Negative tester probe \(\rightarrow\) red}^{\text{4}}\]

\[\text{Does the starter relay have continuity between red}^{\text{3}}\text{ and red}^{\text{4}}?\]

\[\downarrow \text{YES} \quad \downarrow \text{NO}\]

Replace the starter relay.

6. Main switch
- Check the main switch for continuity. Refer to “CHECKING THE SWITCHES”.
- Is the main switch OK?

\[\downarrow \text{YES} \quad \downarrow \text{NO}\]

Replace the main switch.

7. Brake light switch (front and rear)
- Check the brake light switches for continuity. Refer to “CHECKING THE SWITCHES”.
- Is each brake light switch OK?

\[\downarrow \text{YES} \quad \downarrow \text{NO}\]

Replace the brake light switch(es).

8. Engine stop switch
- Check the engine stop switch for continuity. Refer to “CHECKING THE SWITCHES”.
- Is the engine stop switch OK?

\[\downarrow \text{YES} \quad \downarrow \text{NO}\]

Replace the right handlebar switch.

9. Sidestand switch (optional)
- Check the sidestand switch for continuity. Refer to “CHECKING THE SWITCHES”.
- Is the sidestand switch OK?

\[\downarrow \text{YES} \quad \downarrow \text{NO}\]

Replace the sidestand switch.

10. Start switch
- Check the start switch for continuity. Refer to “CHECKING THE SWITCHES”.
- Is the start switch OK?

\[\downarrow \text{YES} \quad \downarrow \text{NO}\]

Replace the right handlebar switch.
11. Wiring

- Check the entire starting system’s wiring. Refer to “CIRCUIT DIAGRAM”.
- Is the starting system’s wiring properly connected and without defects?

YES

The starting system circuit is OK.

NO

Properly connect or repair the starting system’s wiring.
Removing the starter motor

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Starter motor lead coupler</td>
<td>1</td>
<td>Remove the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Starter motor</td>
<td>1</td>
<td>Refer to “COVER AND PANEL” in chapter 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refer to “ENGINE REMOVAL” in chapter 5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Disconnect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For installation, reverse the removal procedure.</td>
</tr>
</tbody>
</table>

Disassembling the starter motor

<table>
<thead>
<tr>
<th>Order</th>
<th>Job/Part</th>
<th>Q'ty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O-ring</td>
<td>1</td>
<td>Disassemble the parts in the order listed.</td>
</tr>
<tr>
<td>2</td>
<td>Gasket</td>
<td>1</td>
<td>Refer to “ASSEMBLING THE STARTER MOTOR”.</td>
</tr>
<tr>
<td>3</td>
<td>Stator assembly</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>O-ring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Armature coil</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Brush</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Plate washer</td>
<td>1</td>
<td>For assembly, reverse the disassembly</td>
</tr>
<tr>
<td>8</td>
<td>Bracket</td>
<td>1</td>
<td>procedure.</td>
</tr>
</tbody>
</table>

Note: *5Nm (0.5 m·kg, 3.6 ft·lb)*

Note: *13Nm (1.3 m·kg, 9.4 ft·lb)*
CHECKING THE STARTER MOTOR

1. Check:
 - commutator
 Dirt → Clean with 600-grit sandpaper.

2. Measure:
 - commutator diameter \(a\)
 Out of specification → Replace the starter motor.

 Commutator wear limit
 16.6 mm (0.65 in)

3. Measure:
 - mica undercut \(b\)
 Out of specification → Scrape the mica to the proper measurement with a hacksaw blade that has been grounded to fit the commutator.

 Mica undercut
 1.35 mm (0.05 in)

 NOTE:
The mica of the commutator must be undercut to ensure proper operation of the commutator.

4. Measure:
 - armature assembly resistances (commutator and insulation)
 Out of specification → Replace the starter motor.

 a. Measure the armature assembly resistances with the pocket tester.

 Pocket tester
 90890-03112 (YU-03112-C)

 Armature coil
 Commutator resistance \(1\)
 0.0378 ~ 0.0462 Ω at 20°C (68°F)
 Insulation resistance \(2\)
 Above 1 MΩ at 20°C (68°F)
b. If any resistance is out of specification, replace the starter motor.

5. Measure:
 • brush length □
 Out of specification → Replace the brushes as a set.

 Brush length wear limit
 3.5 mm (0.14 in)

6. Measure:
 • brush spring force
 Out of specification → Replace the brush springs as a set.

 Brush spring force
 3.92 ~ 5.88N (400 ~ 600gf, 14.11 ~ 21.16oz)

7. Check:
 • gear teeth
 Damage/wear → Replace the gear.

8. Check:
 • bearing①
 • oil seal②
 • bush③
 Damage/wear → Replace.
ASSEMBLING THE STARTER MOTOR

1. Install:
 • brush seat ①

2. Install:
 • washer ①
 • armature coil ②
 • o-ing New ③
 • stator assembly ④

3. Install:
 • bracket
 • bolts ①

NOTE:
Align the match marks ③ on the starter motor yoke with the match marks ⑤ on the bracket.
1. AC magneto
2. Rectifier/regulator
3. Main fuse
4. Battery
TROUBLESHOOTING

The battery is not being charged.

Check:
1. main fuse
2. battery
3. charging voltage
4. stator coil resistance
5. wiring connections
 (of the entire charging system)

NOTE:
- Before troubleshooting, remove the following part(s):
 1. battery cover/front cover
 2. side cover(right)
 3. front fork upper cover
 4. front fork cover(left and right)
 5. leg shield1
- Troubleshoot with the following special tool(s).

Digital tachometer
90890-06760
Pocket tester
90890-03112
YU-03112-C

1. Main fuse
- Check the fuse for continuity.
 Refer to “CHECKING THE FUSE” in chapter 3.
- Is the fuse OK?
 YES
 NO
 Replace the fuse.

2. Battery
- Check the condition of the battery.
 Refer to “CHECKING AND CHARGING THE BATTERY” in chapter 3.

Minimum open-circuit voltage
12.8 V or more at 20°C (68°F)

- Is the battery OK?
 YES
 NO
 • Clean the battery terminals.
 • Recharge or replace the battery.

3. Charging voltage
- Connect the digital tachometer to the spark plug lead of cylinder.
- Connect the pocket tester (DC 20 V) to the battery as shown.

Positive tester probe → positive battery terminal
Negative tester probe → negative battery terminal

- Start the engine and let it run at approximately 5,000 r/min.
- Measure the charging voltage.

Charging voltage
14 V at 5000r/min
NOTE:
Make sure the battery is fully charged.

• Is the charging voltage within specification?

[Diagram]

Positive tester probe → white ①
Negative tester probe → white ②

• Measure the stator coil resistances.

Stator coil resistance
0.28 ~ 0.42 Ω at 20°C (68°F)

• Is the stator coil OK?

Replace the crankshaft position sensor/stator coil assembly.

5. Wiring

• Check the wiring connections of the entire charging system.
 Refer to “CIRCUIT DIAGRAM”.
• Is the charging system’s wiring properly connected and without defects?

Replace the rectifier/regulator.
Properly connect or repair the charging system’s wiring.
TROUBLESHOOTING

Any of the following fail to light: headlight, high beam indicator light, taillight, license plate light or meter light.

Check:
1. main fuse
2. battery
3. main switch
4. dimmer switch
5. wiring connections
 (of the entire lighting system)

NOTE:
- Before troubleshooting, remove the following part(s):
 1. battery cover/front cover
 2. side cover(right)
 3. front fork upper cover
 4. front fork cover(left and right)
 5. leg shield1
- Troubleshoot with the following special tool(s).

Pocket tester
90890-03112
YU-03112-C

2. Battery
- Check the condition of the battery.
 Refer to “CHECKING AND CHARGING THE BATTERY” in chapter 3.

Minimum open-circuit voltage
12.8 V or more at 20°C (68°F)

- Is the battery OK?
 YES
 NO
 • Clean the battery terminals.
 • Recharge or replace the battery.

3. Main switch
- Check the main switch for continuity.
 Refer to “CHECKING THE SWITCHES”.
- Is the main switch OK?
 YES
 NO
 Replace the main switch.

4. Dimmer switch
- Check the dimmer switch for continuity.
 Refer to “CHECKING THE SWITCHES”.
- Is the dimmer switch OK?
 YES
 NO
 The dimmer switch is faulty. Replace the left handlebar switch.

Replace the fuse.
5. Wiring

- Check the entire lighting system's wiring. Refer to "CIRCUIT DIAGRAM".
- Is the lighting system's wiring properly connected and without defects?

 YES NO

Check the condition of each of the lighting system's circuits. Refer to "CHECKING THE LIGHTING SYSTEM".

Properly connect or repair the lighting system's wiring.
CHECKING THE LIGHTING SYSTEM

1. The headlight and the high beam indicator light fail to come on.

1. Headlight bulb and socket
 - Check the headlight bulb and socket for continuity.
 - Refer to "CHECKING THE BULBS AND BULB SOCKETS"
 - Are the headlight bulb and socket OK?

 YES NO

 Replace the headlight bulb, socket or both.

2. High beam indicator light bulb and socket
 - Check the high beam indicator light bulb and socket for continuity.
 - Refer to "CHECKING THE BULBS AND BULB SOCKETS"
 - Are the high beam indicator light bulb and socket OK?

 YES NO

 Replace the high beam indicator light bulb, socket or both.

3. Voltage
 - Connect the pocket tester (DC 20 V) to the headlight and high beam indicator light couplers as shown.

 When the dimmer switch is set to " " or " ".

 Headlight
 Positive tester probe → yellow (1) or green (2)
 Negative tester probe → black/green (3)

 High beam indicator light
 Positive tester probe → yellow (4)
 Negative tester probe → black/green (5)

 Meter assembly coupler

 Set the main switch to "ON".
 Start the engine.
 Set the dimmer switch to " " or " ".
 Measure the voltage (DC 12 V) of yellow(1)(green 2) on the headlight coupler and yellow(4) on the meter assembly coupler(wire harness side).
 Is the voltage within specification?
This circuit is OK.

The wiring circuit from the main switch to the headlight coupler or meter assembly coupler is faulty and must be repaired. Refer to “CIRCUIT DIAGRAM”.

2. The meter light fails to come on.

1. Meter light bulb and socket
 - Check the meter light bulb and socket for continuity. Refer to “CHECKING THE BULBS AND BULB SOCKETS”
 - Are the meter light bulb and socket OK?

 YES
 NO

 Replace the meter light bulb, socket or both.

2. Voltage
 - Connect the pocket tester (DC 20 V) to the meter light coupler (wire harness side) as shown.

 Positive tester probe → brown
 Negative tester probe → black

 Set the main switch to “ON”.
 Measure the voltage (DC 12 V) of brown on the meter light coupler (wire harness side).
 Is the voltage within specification?

 YES
 NO

 This circuit is OK.

 The wiring circuit from the main switch to the meter light coupler is faulty and must be repaired. Refer to “CIRCUIT DIAGRAM”.

8-31
3. Voltage

- Connect the pocket tester (DC 20 V) to the ECU coupler (wire harness side) as shown.

Positive tester probe → black/green ①
Negative tester probe → black/white ②

- Set the main switch to "ON".
- Measure the voltage (DC 12 V) of black/green ① on the ECU coupler (wire harness side).
- Is the voltage within specification?

YES NO

This circuit is OK.

The wiring circuit from the main switch to the ECU coupler is faulty and must be repaired. Refer to "CIRCUIT DIAGRAM".

3. The tail/brake light fails to come on.

1. Tail/brake light bulb and socket

- Check the tail/brake light bulb and socket for continuity.
- Refer to “CHECKING THE BULBS AND BULB SOCKETS”
- Are the tail/brake light bulb and socket OK?

YES NO

Replace the tail/brake light bulb, socket or both.

2. Voltage

- Connect the pocket tester (DC 20 V) to the tail/brake light coupler (wire harness side) as shown.

Positive tester probe → blue ①
Negative tester probe → black ②

- Set the main switch to "ON".
- Measure the voltage (DC 12 V) of blue ① on the tail/brake light coupler (tail/brake light side).
- Is the voltage within specification?

YES NO

This circuit is OK.

The wiring circuit from the main switch to the tail/brake light coupler is faulty and must be repaired. Refer to "CIRCUIT DIAGRAM".
4. The license plate light fails to come on.

1. License plate light bulb and socket
 • Check the license plate light bulb and socket for continuity.
 Refer to “CHECKING THE BULBS AND BULB SOCKETS”
 • Are the license plate light bulb and socket OK?

 YES NO

 Replace the license plate light bulb, socket or both.

2. Voltage
 • Connect the pocket tester (DC 20 V) to the license plate light coupler (license plate light side) as shown.
 Positive tester probe → blue ①
 Negative tester probe → black ②

 • Set the main switch to “ON”.
 • Measure the voltage (DC 12 V) of blue ① on the license plate light coupler (license plate light side).
 • Is the voltage within specification?

 YES NO

 This circuit is OK. The wiring circuit from the main switch to the license plate light coupler is faulty and must be repaired. Refer to “CIRCUIT DIAGRAM”.

8-33
TROUBLESHOOTING

• Any of the following fail to light: turn signal light, brake light or an indicator light.
• The horn fails to sound.

Check:
1. main fuse
2. battery
3. main switch
4. wiring connections (of the entire signaling system)

NOTE:
• Before troubleshooting, remove the following part(s):
 1. battery cover/front cover
 2. side cover (left and right)
 3. front fork upper cover
 4. front fork cover (left and right)
 5. leg shield 1, 2
 6. footrest board

Pocket tester
90890-03112
YU-03112-C

2. Battery
• Check the condition of the battery. Refer to “CHECKING AND CHARGING THE BATTERY” in chapter 3.

Minimum open-circuit voltage
12.8 V or more at 20°C (68°F)

• Is the battery OK?

↓ YES ↓ NO
• Clean the battery terminals.
• Recharge or replace the battery.

3. Main switch
• Check the main switch for continuity. Refer to “CHECKING THE SWITCHES”.
• Is the main switch OK?

↓ YES ↓ NO
Replace the main switch.

4. Wiring
• Check the entire signal system’s wiring. Refer to “CIRCUIT DIAGRAM”.
• Is the signaling system’s wiring properly connected and without defects?

↓ YES ↓ NO
Check the condition of each of the signaling system’s circuits. Refer to “CHECKING THE SIGNALING SYSTEM”.

PROPERLY CONNECT OR REPAIR THE SIGNALING SYSTEM’S WIRING.
CHECKING THE SIGNALING SYSTEM

1. The horn fails to sound.

1. Horn switch
 - Check the horn switch for continuity. Refer to "CHECKING THE SWITCHES".
 - Is the horn switch OK?

 \[
 \begin{array}{c c}
 & \text{YES} & \text{NO} \\
 \rightarrow \text{Replace the left handlebar switch.}
 \end{array}
 \]

2. Voltage
 - Connect the pocket tester (DC 20 V) to the horn connector at the horn terminal as shown.

 Positive tester probe \(\rightarrow \text{brown} \)
 Negative tester probe \(\rightarrow \text{ground} \)

 \[
 \begin{array}{c c}
 & \text{YES} & \text{NO} \\
 \rightarrow \text{The horn is OK.}
 \end{array}
 \]

3. Horn
 - Disconnect the pink connector at the horn terminal.
 - Connect a jumper lead \(\circ \) to the horn terminal and ground the jumper lead.
 - Set the main switch to "ON".
 - Push the horn switch.
 - Does the horn sound?

 \[
 \begin{array}{c c}
 & \text{YES} & \text{NO} \\
 \rightarrow \text{Replace the horn.}
 \end{array}
 \]

4. Voltage
 - Connect the pocket tester (DC 20 V) to the horn connector at the pink terminal as shown.

 Positive tester probe \(\rightarrow \text{pink} \)
 Negative tester probe \(\rightarrow \text{ground} \)

 \[
 \begin{array}{c c}
 & \text{YES} & \text{NO} \\
 \rightarrow \text{Repair or replace the horn.}
 \end{array}
 \]

The wiring circuit from the main switch to the horn connector is faulty and must be repaired. Refer to "CIRCUIT DIAGRAM".
2. The tail/brake light fails to come on.

1. Tail/brake light bulb and socket
 - Check the tail/brake light bulb and socket for continuity.
 - Refer to "CHECKING THE BULBS AND BULB SOCKETS"
 - Are the tail/brake light bulb and socket OK?

 ![Diagram of tail/brake light bulb and socket test](image)

 Positive tester probe → green/yellow
 Negative tester probe → black

 • Set the main switch to "ON".
 • Pull in the brake levers.
 • Measure the voltage (DC 12 V) of green/yellow on the tail/brake light coupler (wire harness side).
 • Is the voltage within specification?

 ![Diagram of voltage measurement](image)

 YES
 NO

 Replace the tail/brake light bulb, socket or both.

2. Brake light switches
 - Check the brake light switches for continuity.
 - Refer to "CHECKING THE SWITCHES"
 - Is the brake light switch OK?

 ![Diagram of brake light switches test](image)

 YES
 NO

 Replace the brake light switch(es).

 This circuit is OK.

3. Voltage
 - Connect the pocket tester (DC 20 V) to the tail/brake light coupler (wire harness side) as shown.

 ![Diagram of voltage measurement](image)

 YES
 NO

 This circuit is OK.

The wiring circuit from the main switch to the tail/brake light coupler is faulty and must be repaired.
Refer to "CIRCUIT DIAGRAM".
3. The turn signal light, turn signal indicator light or both fail to blink.

1. Turn signal indicator light bulb and socket
 • Check the turn signal indicator light bulb and socket for continuity.
 Refer to “CHECKING THE BULBS AND BULB SOCKETS”
 • Are the turn signal indicator light bulb and socket OK?
 ![Diagram]

 YES \[\rightarrow\] NO
 Replace the turn signal indicator light bulb, socket or both.

2. Turn signal light bulb and socket
 • Check the turn signal light bulb and socket for continuity.
 Refer to “CHECKING THE BULBS AND BULB SOCKETS”
 • Are the turn signal light bulb and socket OK?
 ![Diagram]

 YES \[\rightarrow\] NO
 Replace the turn signal light bulb, socket or both.

3. Turn signal switch
 • Check the turn signal switch for continuity.
 Refer to “CHECKING THE SWITCHES”
 • Is the turn signal switch OK?
 ![Diagram]

 YES \[\rightarrow\] NO
 Replace the left handle-bar switch.

4. Voltage
 • Connect the pocket tester (DC 20 V) to the turn signal relay coupler (wire harness side) as shown.

 Positive tester probe → brown ①
 Negative tester probe → ground
 ![Diagram]

 • Set the main switch to “ON”.
 • Measure the voltage (DC 12 V) on brown ① at the turn signal relay coupler (wire harness side).
 • Is the voltage within specification?

 YES \[\rightarrow\] NO
 The wiring circuit from the main switch to the turn signal relay coupler is faulty and must be repaired.
 Refer to “CIRCUIT DIAGRAM”.

8-38
5. Voltage

- Connect the pocket tester (DC 20 V) to the turn signal relay coupler (wire harness side) as shown.

Positive tester probe → brown/white
Negative tester probe → ground

- Set the main switch to “ON”.
- Measure the voltage (DC 12 V) on brown/white at the turn signal relay coupler (wire harness side).
- Is the voltage within specification?

↓ YES

The turn signal relay is faulty and must be replaced.

↓ NO

6. Voltage

- Connect the pocket tester (DC 20 V) to the turn signal light connector or meter assembly coupler (wire harness side) as shown.

Left turn signal light
Positive tester probe → chocolate
Negative tester probe → ground
Right turn signal light
Positive tester probe → dark green
Negative tester probe → ground

- Set the main switch to “ON”.
- Set the turn signal switch to “←” or “→”.
- Measure the voltage (DC 12 V) of the chocolate 1 or dark green 2 at the turn signal light connector (wire harness side).
- Is the voltage within specification?

↓ YES

This circuit is OK.

↓ NO

The wiring circuit from the turn signal switch to the turn signal light connector is faulty and must be repaired.
4. The fuel level meter fails to operate.

1. Fuel sender
 - Remove the fuel pump from the fuel tank.
 - Connect the pocket tester ($\Omega \times 1$) to the fuel sender coupler (wire harness side) as shown.

 Positive tester probe → green ①
 Negative tester probe → black ②

 Fuel sender resistance (up position “F”)(Ω × 1)
 4~10Ω at 20°C (68°F)
 Fuel sender resistance (down position “E”)(Ω × 10)
 90~100Ω at 20°C (68°F)

 - Is the fuel sender OK?

 YES YES NO NO

 Replace the fuel pump.

2. Voltage
 - Connect the pocket tester (DC 20 V) to the meter light coupler (wire harness side) as shown.

 Positive tester probe → brown ①
 Negative tester probe → black ②

 DC20V

 - Set the main switch to “ON”.
 - Measure the voltage (DC 12 V) of brown ① on the meter light coupler (wire harness side).
 - Is the voltage within specification?

 YES NO

 Check the wiring connections of the entire signaling system. Refer to “CIRCUIT DIAGRAM”.
3. Fuel level meter

- Set the main switch to “ON”.
- Move the float up ① or down ②.

Diagram

![Diagram of fuel level meter showing floats ① and ②]

- Check that the fuel level meter needle moves to “F” or “E”.

NOTE:
Before reading the fuel level meter, leave the float in one position (either up or down) for at least three minutes.

- Does the fuel level meter needle move appropriately?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>This circuit is OK.</td>
<td>Replace the speedometer.</td>
</tr>
</tbody>
</table>

This circuit is OK.
COOLING SYSTEM
CIRCUIT DIAGRAM

- Main fuse
- Battery
- ECU
- Main switch
- Coolant temperature sensor
- Coolant temperature indicator light
COOLING SYSTEM

TROUBLESHOOTING

- The coolant temperature indicator light fails to indicate.
- The coolant temperature indicator light fails to indicate when the engine is warm.

Check:
1. main fuse
2. battery
3. main switch
4. coolant temperature sensor
5. wiring connections (the entire cooling system)

NOTE:
- Before troubleshooting, remove the following part(s):
 1. battery cover/front cover
 2. side cover(right)
 3. front fork upper cover
 4. front fork cover(left and right)
 5. leg shield1,2
 6. footrest board
- Troubleshoot with the following special tool(s).

Pocket tester
90890-03112
YU-03112-C

1. Main fuse
- Check the fuse for continuity.
 Refer to “CHECKING THE FUSE” in chapter 3.
- Is the fuse OK?

2. Battery
- Check the condition of the battery.
 Refer to “CHECKING AND CHARGING THE BATTERY” in chapter 3.

Minimum open-circuit voltage
12.8 V or more at 20°C (68°F)

- Is the battery OK?

 YES NO

 • Clean the battery terminals.
 • Recharge or replace the battery.

3. Main switch
- Check the main switch for continuity.
 Refer to “CHECKING THE SWITCHES”.
- Is the main switch OK?

 YES NO

 Replace the main switch.
4. Coolant temperature sensor
 - Remove the coolant temperature sensor from the cylinder head.
 - Connect the pocket tester (Ω x 1k) to the coolant temperature sensor as shown.
 - Immerse the coolant temperature sensor in a container filled with coolant.

 NOTE:
 Make sure the coolant temperature sensor terminals do not get wet.

 - Place a thermometer in the coolant.
 - Slowly heat the coolant, and then let it cool to the specified temperature indicated in the table.
 - Check the thermo switch for continuity at the temperatures indicated below.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C (68°F)</td>
<td>2.32 - 2.59k</td>
</tr>
<tr>
<td>80°C (176°F)</td>
<td>0.310 - 0.326k</td>
</tr>
</tbody>
</table>

 ! WARNING
 - Handle the coolant temperature sensor with special care.
 - Never subject the coolant temperature sensor to strong shocks. If the coolant temperature sensor is dropped, replace it.

5. Wiring
 - Check the entire cooling system’s wiring. Refer to “CIRCUIT DIAGRAM”.
 - Is the cooling system’s wiring properly connected and without defects?

 YES
 - Replace the ECU.

 NO
 - Properly connect or repair the cooling system’s wiring.
CHECKING THE COOLING SYSTEM

1. The coolant temperature indicator light fails to come on.

 1. Coolant temperature indicator light bulb and socket
 • Check the coolant temperature indicator light bulb and socket for continuity.
 Refer to "CHECKING THE BULBS AND BULB SOCKETS"
 • Are the coolant temperature indicator light bulb and socket OK?

 \[\begin{array}{c|c|c|c}
 & \text{YES} & \text{NO} \\
 \hline
 \text{Replace the coolant temperature indicator light bulb, socket or both.}
 \end{array}\]

2. Voltage
 • Connect the pocket tester (DC 20 V) to the meter light coupler (wire harness side) as shown.

 Positive tester probe → green/red \(^1\)
 Negative tester probe → ground

 \[\begin{array}{c}
 \text{DC20V} \\
 \text{G/R B/L}
 \end{array}\]

 • Set the main switch to "ON".
 • Measure the voltage (DC 12 V) of green/red \(^1\) on the coolant temperature sensor coupler (wire harness side).
 • Is the voltage within specification?

 \[\begin{array}{c|c|c|c}
 & \text{YES} & \text{NO} \\
 \hline
 \text{The wiring circuit from the main switch to the coolant temperature sensor coupler is faulty and must be re­paired.}
 \end{array}\]

3. Voltage
 • Connect the pocket tester (DC 20 V) to the meter light coupler (wire harness side) as shown.

 Positive tester probe → brown \(^1\)
 Negative tester probe → green/white \(^2\)

 \[\begin{array}{c}
 \text{DC20V} \\
 \text{G/W Lg Br B/G B}
 \end{array}\]

 • Set the main switch to "ON".
 • Measure the voltage (DC 12 V) of brown 1 on the meter light coupler (wire harness side).
 • Is the voltage within specification?

 \[\begin{array}{c|c|c|c}
 & \text{YES} & \text{NO} \\
 \hline
 \text{The wiring circuit from the main switch to the meter light coupler is faulty and must be re­paired.}
 \end{array}\]

8-45
4. Coolant temperature indicator light

- Disconnect the coolant temperature sensor coupler at the coolant temperature sensor.
- Connect the green/red ① and black/blue ② with a jumper lead ③.
- Set the main switch to "ON".

- Is the coolant temperature indicator light OK?

 YES
 This circuit is OK.

 NO
 Replace the coolant temperature indicator light.
CHAPTER 9
TROUBLE SHOOTING

STARTING FAILURE/HARD STARTING... 9-1
ENGINE .. 9-1
FUEL SYSTEM .. 9-1
ELECTRICAL SYSTEMS ... 9-1

STARTING FAILURES/HARD STARTING/ INCORRECT ENGINE IDLING SPEED ... 9-2
ENGINE .. 9-2
FUEL SYSTEM .. 9-2
ELECTRICAL SYSTEMS ... 9-2

POOR MEDIUM-AND-HIGH-SPEED PERFORMANCE/FAULTY CLUTCH ... 9-3
ENGINE .. 9-3
FUEL SYSTEM .. 9-3

FAULTY CLUTCH .. 9-3
ENGINE OPERATES BUT SCOOTER WILL NOT MOVE 9-3
CLUTCH SLIPS .. 9-3
POOR STARTING PERFORMANCE .. 9-3
POOR SPEED PERFORMANCE .. 9-4

OVERHEATING .. 9-4
ENGINE .. 9-4
COOLING SYSTEM .. 9-4
FUEL SYSTEM .. 9-4
CHASSIS .. 9-4
ELECTRICAL SYSTEMS ... 9-4

POOR BRAKING PERFORMANCE/FAULTY FRONT FORK LEGS/UNSTABLE HANDLING ... 9-5

FAULTY FRONT FORK LEGS .. 9-5
LEAKING OIL .. 9-5
MALFUNCTION .. 9-5

UNSTABLE HANDLING ... 9-5

FAULTY LIGHTING OR SIGNALING SYSTEM .. 9-6
HEADLIGHT DOES NOT COME ON .. 9-6
HEADLIGHT BULB BURNT OUT ... 9-6
TAIL/BRAKE LIGHT DOES NOT COME ON .. 9-6
TAIL/BRAKE LIGHT BULB BURNT OUT .. 9-6
TURN SIGNAL DOES NOT COME ON ... 9-6
TURN SIGNAL BLINKS SLOWLY ... 9-6
TURN SIGNAL REMAINS LIT .. 9-6
TURN SIGNAL BLINKS QUICKLY ... 9-6
HORN DOES NOT SOUND .. 9-6
NOTE:
The following guide for troubleshooting does not cover all the possible causes of trouble. It should be helpful, however, as a guide to basic troubleshooting. Refer to the relative procedure in this manual for checks, adjustments, and replacement of parts.

STARTING FAILURE/HARD STARTING

ENGINE
Cylinder and cylinder head
- Loose spark plug
- Loose cylinder head or cylinder
- Damaged cylinder head gasket
- Damaged cylinder gasket
- Worn or damaged cylinder
- Incorrect valve clearance
- Improperly sealed valve
- Incorrect valve-to-valve-seat contact
- Incorrect valve timing
- Faulty valve spring
- Seized valve

Piston and piston ring
- Improperly installed piston ring
- Damaged, worn or fatigued piston ring
- Seized piston ring
- Seized or damaged piston

Air filter
- Improperly installed air filter
- Clogged air filter element

Crankcase and crankshaft
- Improperly assembled crankcase
- Seized crankshaft

FUEL SYSTEM
Fuel tank
- Empty fuel tank
- Clogged fuel tank cap breather hole
- Deteriorated or contaminated fuel
- Clogged or damaged fuel hose

Fuel pump
- Faulty fuel pump
- Improperly routed hose

Throttle body
- Deteriorated or contaminated fuel
- Sucked-in air

ELECTRICAL SYSTEMS
Battery
- Discharged battery
- Faulty battery

Fuse
- Blown, damaged or incorrect fuse
- Improperly installed fuse

Spark plug
- Incorrect spark plug gap
- Incorrect spark plug heat range
- Fouled spark plug
- Worn or damaged electrode
- Worn or damaged insulator
- Faulty spark plug cap

Ignition coil
- Cracked or broken ignition coil body
- Broken or shorted primary or secondary coil
- Faulty spark plug lead

Ignition system
- Faulty ECU
- Faulty crankshaft position sensor
- Broken AC magneto rotor woodruff key

Switches and wiring
- Faulty main switch
- Faulty engine stop switch
- Broken or shorted wiring
- Faulty front, rear or both brake light switches
- Faulty start switch
- Faulty sidestand switch (optional)
- Improperly grounded circuit
- Loose connections
STARTING FAILURES/HARD STARTING/
INCORRECT ENGINE IDLING SPEED

 Starting system
- Faulty starter motor
- Faulty starter relay
- Faulty starting circuit cut-off relay
- Faulty starter clutch

INCORRECT ENGINE IDLING SPEED

ENGINE
Cylinder and cylinder head
- Incorrect valve clearance
- Damaged valve train components

Air filter
- Clogged air filter element

FUEL SYSTEM
Throttle body
- Damaged or loose throttle body joint
- Improperly ISC (idle speed control) valve
- Improper throttle cable free play
- Flooded throttle body
- Faulty air induction system

ELECTRICAL SYSTEMS
Battery
- Discharged battery
- Faulty battery

Spark plug
- Incorrect spark plug gap
- Incorrect spark plug heat range
- Fouled spark plug
- Worn or damaged electrode
- Worn or damaged insulator
- Faulty spark plug cap

Ignition coil
- Faulty spark plug lead

Ignition system
- Faulty ECU
- Faulty crankshaft position sensor
POOR MEDIUM-AND-HIGH-SPEED PERFORMANCE/FAULTY CLUTCH

POOR MEDIUM-AND-HIGH-SPEED PERFORMANCE

Refer to “STARTING FAILURE/HARD STARTING”.

ENGINE
Air filter
- Clogged air filter element

FUEL SYSTEM
Throttle body
- Faulty diaphragm

Fuel pump
- Faulty fuel pump

EAS00853

FAULTY CLUTCH

ENGINE OPERATES BUT SCOOTER WILL NOT MOVE

V-belt
- Bent, damaged or worn V-belt
- Slipping V-belt

Primary pulley cam and primary pulley slider
- Damaged or worn primary pulley cam
- Damaged or worn primary pulley slider

Clutch spring(s)
- Damaged clutch spring

Transmission gears
- Damaged transmission gear

CLUTCH SLIPS
Clutch shoe springs
- Damaged, loose or worn clutch shoe spring

Clutch shoes
- Damaged or worn clutch shoe

Primary sliding sheave
- Seized primary sliding sheave

POOR STARTING PERFORMANCE

V-belt
- V-belt slips
- Oil or grease on the V-belt

Primary sliding sheave
- Faulty operation
- Worn pin groove
- Worn pin

Clutch shoes
- Bent, damaged or worn clutch shoe
POOR SPEED PERFORMANCE
V-belt
- Worn V-belt
- Oil or grease on the V-belt

Primary pulley weight(s)
- Faulty operation
- Worn primary pulley weight

Primary fixed sheave
- Worn primary fixed sheave

Primary sliding sheave
- Worn primary sliding sheave

Secondary fixed sheave
- Worn secondary fixed sheave

Secondary sliding sheave
- Worn secondary sliding sheave

Hose(s) and pipe(s)
- Damaged hose
- Improperly connected hose
- Damaged pipe
- Improperly connected pipe

FUEL SYSTEM
Throttle body
- Damaged or loose throttle body joint

Air filter
- Clogged air filter element

CHASSIS
Brake(s)
- Dragging brake

ELECTRICAL SYSTEMS
Spark plug
- Incorrect spark plug gap
- Incorrect spark plug heat range

Ignition system
- Faulty coolant temperature sensor
- Faulty ECU

OVERHEATING
ENGINE
Clogged coolant passages
- Heavy carbon buildup

Engine oil
- Incorrect oil level
- Incorrect oil viscosity
- Inferior oil quality

COOLING SYSTEM
Coolant
- Low coolant level

Radiator
- Damaged or leaking radiator
- Faulty radiator cap
- Bent or damaged radiator fan

Water pump
- Damaged or faulty water pump

Thermostat
- Thermostat stays open

Oil cooler
- Clogged or damaged oil cooler

OVERCOOLING
ENGINE
Clogged coolant passages

Engine oil
- Incorrect oil level
- Incorrect oil viscosity
- Inferior oil quality

COOLING SYSTEM
Thermostat
- Thermostat stays closed

Oil cooler
- Clogged or damaged oil cooler
POOR BRAKING PERFORMANCE

Drum brake
- Worn brake shoe
- Worn or rusty brake drum
- Incorrect brake lever position
- Incorrect brake lever free play
- Incorrect brake camshaft lever position
- Incorrect brake shoe position
- Damaged or fatigued brake shoe spring
- Oil or grease on the brake shoe
- Oil or grease on the brake drum

UNSTABLE HANDLING

Handlebar
- Bent or improperly installed handlebar

Steering head components
- Improperly installed handlebar bracket
- Improperly installed lower bracket (improperly tightened ring nut)
- Bent steering stem
- Damaged ball bearing or bearing race

Front fork leg(s)
- Uneven oil levels (both front fork legs)
- Unevenly tensioned fork spring (both front fork legs)
- Broken fork spring
- Bent or damaged inner tube
- Bent or damaged outer tube

Rear shock absorber assembly
- Faulty rear shock absorber spring
- Leaking oil

Tire(s)
- Uneven tire pressures (front and rear)
- Incorrect tire pressure
- Uneven tire wear

Wheel(s)
- Incorrect wheel balance
- Deformed cast wheel
- Damaged wheel bearing
- Bent or loose wheel axle
- Excessive wheel runout

Frame
- Bent frame
- Damaged steering head pipe
- Improperly installed bearing race

FAULTY FRONT FORK LEGS

LEAKING OIL
- Bent, damaged or rusty inner tube
- Cracked or damaged outer tube
- Improperly installed oil seal
- Damaged oil seal lip
- Incorrect oil level (high)
- Loose damper rod assembly bolt
- Damaged damper rod assembly bolt copper washer
- Cracked or damaged cap bolt O-ring

MALFUNCTION
- Bent or damaged inner tube
- Bent or damaged outer tube
- Damaged fork spring
- Worn or damaged outer tube bushing
- Bent or damaged damper rod
- Incorrect oil viscosity
- Incorrect oil level
FAULTY LIGHTING OR SIGNALING SYSTEM

HEADLIGHT DOES NOT COME ON
- Wrong headlight bulb
- Too many electrical accessories
- Hard charging
- Incorrect connection
- Improperly grounded circuit
- Poor contacts (main or light switch)
- Burnt-out headlight bulb

HEADLIGHT BULB BURNT OUT
- Wrong headlight bulb
- Faulty battery
- Faulty rectifier/regulator
- Improperly grounded circuit
- Faulty main switch
- Headlight bulb life expired

TAIL/BRAKE LIGHT DOES NOT COME ON
- Wrong tail/brake light bulb
- Too many electrical accessories
- Incorrect connection
- Burnt-out tail/brake light bulb

TAIL/BRAKE LIGHT BULB BURNT OUT
- Wrong tail/brake light bulb
- Faulty battery
- Tail/brake light bulb life expired

TURN SIGNAL DOES NOT COME ON
- Faulty turn signal switch
- Faulty turn signal relay
- Burnt-out turn signal bulb
- Incorrect connection
- Damaged or faulty wire harness
- Improperly grounded circuit
- Faulty battery
- Blown, damaged or incorrect fuse

TURN SIGNAL BLINKS SLOWLY
- Faulty turn signal relay
- Faulty main switch
- Faulty turn signal switch
- Incorrect turn signal bulb
- Faulty battery

TURN SIGNAL REMAINS LIT
- Faulty turn signal relay
- Burnt-out turn signal bulb

TURN SIGNAL BLINKS QUICKLY
- Incorrect turn signal bulb
- Faulty turn signal relay
- Burnt-out turn signal bulb

HORN DOES NOT SOUND
- Improperly grounded circuit
- Poor contacts (main or light switch)
- Burnt-out headlight bulb
- Incorrect connection
- Too many electrical accessories
- Faulty turn signal relay
- Faulty rectifier/regulator
- Improperly grounded circuit
- Faulty main switch
- Headlight bulb life expired
- Faulty battery
- Blown, damaged or incorrect fuse
- Faulty wire harness

HEADLIGHT BULB BURNT OUT
- Wrong headlight bulb
- Faulty battery
- Faulty rectifier/regulator
- Improperly grounded circuit
- Faulty main switch
- Headlight bulb life expired

TAIL/BRAKE LIGHT DOES NOT COME ON
- Wrong tail/brake light bulb
- Too many electrical accessories
- Incorrect connection
- Burnt-out tail/brake light bulb

TAIL/BRAKE LIGHT BULB BURNT OUT
- Wrong tail/brake light bulb
- Faulty battery
- Tail/brake light bulb life expired

TURN SIGNAL DOES NOT COME ON
- Faulty turn signal switch
- Faulty turn signal relay
- Burnt-out turn signal bulb
- Incorrect connection
- Damaged or faulty wire harness
- Improperly grounded circuit
- Faulty battery
- Blown, damaged or incorrect fuse

TURN SIGNAL BLINKS SLOWLY
- Faulty turn signal relay
- Faulty main switch
- Faulty turn signal switch
- Incorrect turn signal bulb
- Faulty battery
XF50W WIRING DIAGRAM

MARK EXPLANATION

COLOR CODE

CONNECTING WITH GRD. WIRE

CONNECTOR MARK (BETWEEN MAIN & SUB HARNESS)

Black

Red

White

Green

Brown

Yellow

Blue

Chocolate

Dark green

Orange

Pink

Sky blue

Gray

Light green

Brown/White

Brown/Blue

Red/Blue

Red/White

Red/Black

Blue/White

Blue/Yellow

Blue/Black

Black/Red

Black/White

Black/Yellow

Black/Green

Black/Blue

Green/Yellow

White/Blue

White/Red

Yellow/Green

Pink/White

Orange/Black

Green/Red

White/Red

Yellow/Green

Pink/White

Orange/Black